Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import streamlit as st | |
| import seaborn as sns | |
| from data_cleaning import preprocess | |
| from transformers import pipeline | |
| from data_integration import scrape_all_pages | |
| st.set_logo("logo.png") | |
| st.header('Amazon Sentiment Analysis using FineTuned :blue[GPT-2] Pre-Trained Model') | |
| sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") | |
| # Example usage:- | |
| sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' | |
| url = st.text_input("Amazon product link", sample_url) | |
| st.write("Done") | |
| all_reviews = scrape_all_pages(url) | |
| # Convert to DataFrame for further analysis | |
| reviews = pd.DataFrame(all_reviews) | |
| reviews['processed_text'] = reviews['content'].apply(preprocess) | |
| # st.dataframe(reviews, use_container_width=True) | |
| # st.markdown(sentiment_model(['It is Super!'])) | |
| sentiments = [] | |
| for text in reviews['processed_text']: | |
| if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': | |
| output = 'Positive' | |
| else: | |
| output = 'Negative' | |
| sentiments.append(output) | |
| reviews['sentiments'] = sentiments | |
| st.header(':rainbow[Output]') | |
| st.dataframe(reviews, use_container_width=True) | |
| # sns.countplot(reviews['sentiments']) | |