Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +19 -0
- data_cleaning.py +33 -0
- data_integration.py +88 -0
app.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import seaborn as sns
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
sentiment_model = pipeline(model="sentiment-analysis")
|
| 7 |
+
|
| 8 |
+
st.write('Hi')
|
| 9 |
+
|
| 10 |
+
sentiments = []
|
| 11 |
+
for text in df['clean_text']:
|
| 12 |
+
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
|
| 13 |
+
output = 'Positive'
|
| 14 |
+
else:
|
| 15 |
+
output = 'Negative'
|
| 16 |
+
sentiments.append(output)
|
| 17 |
+
|
| 18 |
+
df['sentiments'] = sentiments
|
| 19 |
+
sns.countplot(df['sentiments'])
|
data_cleaning.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import nltk
|
| 3 |
+
nltk.download('stopwords')
|
| 4 |
+
from nltk.corpus import stopwords
|
| 5 |
+
nltk.download('punkt')
|
| 6 |
+
from nltk import sent_tokenize,word_tokenize
|
| 7 |
+
from nltk.stem.snowball import SnowballStemmer
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def normalize(text):
|
| 11 |
+
return(text.lower())
|
| 12 |
+
|
| 13 |
+
def remove_stopwords(text):
|
| 14 |
+
list_stopwords = stopwords.words("english")
|
| 15 |
+
finalText=' '.join(a for a in word_tokenize(text) if (a not in list_stopwords and a.isalnum()))
|
| 16 |
+
return finalText
|
| 17 |
+
|
| 18 |
+
def removenumbers(text):
|
| 19 |
+
re_num = "\d+" ###COMPLETE THE REGULAR EXPRESSION
|
| 20 |
+
text = re.sub(re_num, "", text)
|
| 21 |
+
return text
|
| 22 |
+
|
| 23 |
+
def stem_text(text):
|
| 24 |
+
stemmer = SnowballStemmer("english")
|
| 25 |
+
t=' '.join(stemmer.stem(a) for a in word_tokenize(text))
|
| 26 |
+
return t
|
| 27 |
+
|
| 28 |
+
def preprocess(text):
|
| 29 |
+
text = normalize(text)
|
| 30 |
+
text = remove_stopwords(text)
|
| 31 |
+
text = removenumbers(text)
|
| 32 |
+
text = stem_text(text)
|
| 33 |
+
return(text)
|
data_integration.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
custom_headers = {
|
| 6 |
+
"Accept-language": "en-GB,en;q=0.9",
|
| 7 |
+
"Accept-Encoding": "gzip, deflate, br",
|
| 8 |
+
"Cache-Control": "max-age=0",
|
| 9 |
+
"Connection": "keep-alive",
|
| 10 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
def get_soup(url):
|
| 14 |
+
response = requests.get(url, headers=custom_headers)
|
| 15 |
+
|
| 16 |
+
if response.status_code != 200:
|
| 17 |
+
print("Error in getting webpage")
|
| 18 |
+
print(f"Error: {response.status_code} - {response.reason}")
|
| 19 |
+
exit(-1)
|
| 20 |
+
|
| 21 |
+
soup = BeautifulSoup(response.text, "lxml")
|
| 22 |
+
return soup
|
| 23 |
+
|
| 24 |
+
def get_reviews(soup):
|
| 25 |
+
review_elements = soup.select("div.review")
|
| 26 |
+
|
| 27 |
+
scraped_reviews = []
|
| 28 |
+
|
| 29 |
+
for review in review_elements:
|
| 30 |
+
r_author_element = review.select_one("span.a-profile-name")
|
| 31 |
+
r_author = r_author_element.text if r_author_element else None
|
| 32 |
+
|
| 33 |
+
r_rating_element = review.select_one("i.review-rating")
|
| 34 |
+
r_rating = r_rating_element.text.replace("out of 5 stars", "") if r_rating_element else None
|
| 35 |
+
|
| 36 |
+
r_title_element = review.select_one("a.review-title")
|
| 37 |
+
r_title_span_element = r_title_element.select_one("span:not([class])") if r_title_element else None
|
| 38 |
+
r_title = r_title_span_element.text if r_title_span_element else None
|
| 39 |
+
|
| 40 |
+
r_content_element = review.select_one("span.review-text")
|
| 41 |
+
r_content = r_content_element.text if r_content_element else None
|
| 42 |
+
|
| 43 |
+
r_date_element = review.select_one("span.review-date")
|
| 44 |
+
r_date = r_date_element.text if r_date_element else None
|
| 45 |
+
|
| 46 |
+
r_verified_element = review.select_one("span.a-size-mini")
|
| 47 |
+
r_verified = r_verified_element.text if r_verified_element else None
|
| 48 |
+
|
| 49 |
+
r_image_element = review.select_one("img.review-image-tile")
|
| 50 |
+
r_image = r_image_element.attrs["src"] if r_image_element else None
|
| 51 |
+
|
| 52 |
+
r = {
|
| 53 |
+
"author": r_author,
|
| 54 |
+
"rating": r_rating,
|
| 55 |
+
"title": r_title,
|
| 56 |
+
"content": r_content,
|
| 57 |
+
"date": r_date,
|
| 58 |
+
"verified": r_verified,
|
| 59 |
+
"image_url": r_image
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
scraped_reviews.append(r)
|
| 63 |
+
|
| 64 |
+
return scraped_reviews
|
| 65 |
+
|
| 66 |
+
def scrape_all_pages(url):
|
| 67 |
+
all_reviews = []
|
| 68 |
+
|
| 69 |
+
page_number = 1
|
| 70 |
+
while True:
|
| 71 |
+
soup = get_soup(f"{url}&pageNumber={page_number}")
|
| 72 |
+
reviews = get_reviews(soup)
|
| 73 |
+
|
| 74 |
+
if not reviews: # Break the loop if no reviews found on this page
|
| 75 |
+
break
|
| 76 |
+
|
| 77 |
+
all_reviews.extend(reviews)
|
| 78 |
+
page_number += 1
|
| 79 |
+
|
| 80 |
+
return all_reviews
|
| 81 |
+
|
| 82 |
+
# # Example usage:
|
| 83 |
+
# url = "https://www.amazon.in/OnePlus-Nord-Pastel-128GB-Storage/product-reviews/B0BY8JZ22K/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews"
|
| 84 |
+
# all_reviews = scrape_all_pages(url)
|
| 85 |
+
|
| 86 |
+
# # Convert to DataFrame for further analysis
|
| 87 |
+
# df = pd.DataFrame(all_reviews)
|
| 88 |
+
# df
|