Spaces:
Runtime error
Runtime error
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.llms import OpenAI | |
| import os | |
| with open("guide1.txt") as f: | |
| hitchhikersguide = f.read() | |
| text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0, separator = "\n") | |
| texts = text_splitter.split_text(hitchhikersguide) | |
| embeddings = OpenAIEmbeddings() | |
| docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever() | |
| chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") | |
| def make_inference(query): | |
| docs = docsearch.get_relevant_documents(query) | |
| return(chain.run(input_documents=docs, question=query)) | |
| if __name__ == "__main__": | |
| # make a gradio interface | |
| import gradio as gr | |
| gr.Interface( | |
| make_inference, | |
| [ | |
| gr.inputs.Textbox(lines=2, label="Query"), | |
| ], | |
| gr.outputs.Textbox(label="Response"), | |
| title="🗣️TalkToMyDoc📄", | |
| description="🗣️TalkToMyDoc📄 is a tool that allows you to ask questions about a document. In this case - Hitch Hitchhiker's Guide to the Galaxy.", | |
| ).launch() |