File size: 2,637 Bytes
8749bfc
b7568df
 
 
 
 
 
 
4ee3479
bc82231
8749bfc
 
 
 
bc82231
 
 
 
8749bfc
bc82231
8749bfc
 
bc82231
8749bfc
 
bc82231
 
 
 
8749bfc
bc82231
 
 
 
 
 
 
 
 
8749bfc
4ee3479
bc82231
c20bcc4
8749bfc
bc82231
8749bfc
bc82231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8749bfc
 
bc82231
8749bfc
bc82231
8749bfc
 
 
 
bc82231
 
 
 
8749bfc
 
 
bc82231
 
8749bfc
bc82231
8749bfc
bc82231
 
 
 
 
8749bfc
 
bc82231
8749bfc
bc82231
8749bfc
bc82231
8749bfc
bc82231
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
# import pickle
# import numpy as np
# from fastapi import FastAPI,Response
# from sklearn.metrics import accuracy_score, f1_score
# import prometheus_client as prom
# import pandas as pd
# import uvicorn
from transformers import VisionEncoderDecoderModel,pipeline, ViTImageProcessor, AutoTokenizer
import torch


#model

# loaded_model = pickle.load(open(save_file_name, 'rb'))

# app=FastAPI()


# test_data=pd.read_csv("test.csv")


# f1_metric = prom.Gauge('death_f1_score', 'F1 score for test samples')

# Function for updating metrics
# def update_metrics():
#     test = test_data.sample(20)
#     X = test.iloc[:, :-1].values
#     y = test['DEATH_EVENT'].values
    
#     # test_text = test['Text'].values
#     test_pred = loaded_model.predict(X)
#     #pred_labels = [int(pred['label'].split("_")[1]) for pred in test_pred]

#     f1 = f1_score( y , test_pred).round(3)

#     #f1 = f1_score(test['labels'], pred_labels).round(3)

#     f1_metric.set(f1)

vitgpt_processor = ViTImageProcessor.from_pretrained("model")
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("model")
vitgpt_tokenizer = AutoTokenizer.from_pretrained("model", return_tensors="pt")

device = "cuda" if torch.cuda.is_available() else "cpu"

vitgpt_model.to(device)

def generate_caption(processor, model, image, tokenizer=None):
    inputs = processor(images=image, return_tensors="pt").to(device)
    
    generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)

    if tokenizer is not None:
        generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    else:
        generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
   
    return generated_caption

def predict_event(input):
    


    caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)

    return caption_vitgpt




# @app.get("/metrics")
# async def get_metrics():
#     update_metrics()
#     return Response(media_type="text/plain", content= prom.generate_latest())



title = "capstone"
description = "final capstone"

out_response = gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")

iface = gr.Interface(fn=predict_event, 
                         inputs=gr.inputs.Image(type="pil"),
                         outputs=out_response,
                         enable_queue=True)
    


# app = gr.mount_gradio_app(app, iface, path="/")

iface.launch(server_name = "0.0.0.0", server_port = 8001)

# if __name__ == "__main__":
    # Use this for debugging purposes only
 
    # uvicorn.run(app, host="0.0.0.0", port=8001)