Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,31 +38,43 @@ import torch
|
|
38 |
|
39 |
# f1_metric.set(f1)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
|
47 |
vitgpt_model.to(device)
|
48 |
|
49 |
def generate_caption(processor, model, image, tokenizer=None):
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
53 |
|
54 |
-
if tokenizer is not None:
|
55 |
-
|
56 |
-
else:
|
57 |
-
|
58 |
|
59 |
-
return generated_caption
|
60 |
|
61 |
-
def predict_event(
|
62 |
|
63 |
|
64 |
|
65 |
-
caption_vitgpt = generate_caption(
|
66 |
|
67 |
return caption_vitgpt
|
68 |
|
|
|
38 |
|
39 |
# f1_metric.set(f1)
|
40 |
|
41 |
+
feature_extractor = ViTImageProcessor.from_pretrained("model")
|
42 |
+
cap_model = VisionEncoderDecoderModel.from_pretrained("model")
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("model")
|
44 |
|
45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
|
47 |
vitgpt_model.to(device)
|
48 |
|
49 |
def generate_caption(processor, model, image, tokenizer=None):
|
50 |
+
max_length = 16
|
51 |
+
num_beams = 4
|
52 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
53 |
+
|
54 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
55 |
+
pixel_values = pixel_values.to(device)
|
56 |
+
|
57 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
58 |
+
|
59 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
60 |
+
preds = [pred.strip() for pred in preds]
|
61 |
+
return preds
|
62 |
+
# inputs = processor(images=image, return_tensors="pt").to(device)
|
63 |
|
64 |
+
# generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
65 |
|
66 |
+
# if tokenizer is not None:
|
67 |
+
# generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
68 |
+
# else:
|
69 |
+
# generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
70 |
|
71 |
+
# return generated_caption
|
72 |
|
73 |
+
def predict_event(image):
|
74 |
|
75 |
|
76 |
|
77 |
+
caption_vitgpt = generate_caption(feature_extractor, cap_model, image, tokenizer)
|
78 |
|
79 |
return caption_vitgpt
|
80 |
|