Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,11 +39,11 @@ import torch
|
|
39 |
# f1_metric.set(f1)
|
40 |
|
41 |
feature_extractor = ViTImageProcessor.from_pretrained("model")
|
42 |
-
|
43 |
cap_model = VisionEncoderDecoderModel.from_pretrained("model")
|
44 |
-
|
45 |
tokenizer = AutoTokenizer.from_pretrained("model")
|
46 |
-
print("tokenizer--",tokenizer)
|
47 |
|
48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
|
@@ -63,12 +63,16 @@ def generate_caption(processor, model, image, tokenizer=None):
|
|
63 |
# preds = [pred.strip() for pred in preds]
|
64 |
# return preds
|
65 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
66 |
|
67 |
generated_ids = model.generate(pixel_values=inputs.pixel_values)
|
|
|
68 |
|
69 |
if tokenizer is not None:
|
|
|
70 |
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
71 |
else:
|
|
|
72 |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
73 |
|
74 |
return generated_caption
|
|
|
39 |
# f1_metric.set(f1)
|
40 |
|
41 |
feature_extractor = ViTImageProcessor.from_pretrained("model")
|
42 |
+
|
43 |
cap_model = VisionEncoderDecoderModel.from_pretrained("model")
|
44 |
+
|
45 |
tokenizer = AutoTokenizer.from_pretrained("model")
|
46 |
+
print("tokenizer --",tokenizer)
|
47 |
|
48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
|
|
|
63 |
# preds = [pred.strip() for pred in preds]
|
64 |
# return preds
|
65 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
66 |
+
print("inputs",inputs)
|
67 |
|
68 |
generated_ids = model.generate(pixel_values=inputs.pixel_values)
|
69 |
+
print("generated_ids",generated_ids)
|
70 |
|
71 |
if tokenizer is not None:
|
72 |
+
print("tokenizer not null--",tokenizer)
|
73 |
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
74 |
else:
|
75 |
+
print("tokenizer null--",tokenizer)
|
76 |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
77 |
|
78 |
return generated_caption
|