ashwml commited on
Commit
cdafbc0
·
1 Parent(s): 5cb1c99

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -39,11 +39,11 @@ import torch
39
  # f1_metric.set(f1)
40
 
41
  feature_extractor = ViTImageProcessor.from_pretrained("model")
42
- print("feature_extractor--",feature_extractor)
43
  cap_model = VisionEncoderDecoderModel.from_pretrained("model")
44
- print("cap_model--",cap_model)
45
  tokenizer = AutoTokenizer.from_pretrained("model")
46
- print("tokenizer--",tokenizer)
47
 
48
  device = "cuda" if torch.cuda.is_available() else "cpu"
49
 
@@ -63,12 +63,16 @@ def generate_caption(processor, model, image, tokenizer=None):
63
  # preds = [pred.strip() for pred in preds]
64
  # return preds
65
  inputs = processor(images=image, return_tensors="pt").to(device)
 
66
 
67
  generated_ids = model.generate(pixel_values=inputs.pixel_values)
 
68
 
69
  if tokenizer is not None:
 
70
  generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
71
  else:
 
72
  generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
73
 
74
  return generated_caption
 
39
  # f1_metric.set(f1)
40
 
41
  feature_extractor = ViTImageProcessor.from_pretrained("model")
42
+
43
  cap_model = VisionEncoderDecoderModel.from_pretrained("model")
44
+
45
  tokenizer = AutoTokenizer.from_pretrained("model")
46
+ print("tokenizer --",tokenizer)
47
 
48
  device = "cuda" if torch.cuda.is_available() else "cpu"
49
 
 
63
  # preds = [pred.strip() for pred in preds]
64
  # return preds
65
  inputs = processor(images=image, return_tensors="pt").to(device)
66
+ print("inputs",inputs)
67
 
68
  generated_ids = model.generate(pixel_values=inputs.pixel_values)
69
+ print("generated_ids",generated_ids)
70
 
71
  if tokenizer is not None:
72
+ print("tokenizer not null--",tokenizer)
73
  generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
74
  else:
75
+ print("tokenizer null--",tokenizer)
76
  generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
77
 
78
  return generated_caption