import gradio as gr # import pickle # import numpy as np # from fastapi import FastAPI,Response # from sklearn.metrics import accuracy_score, f1_score # import prometheus_client as prom # import pandas as pd # import uvicorn from transformers import VisionEncoderDecoderModel,pipeline, ViTImageProcessor, AutoTokenizer import torch #model # loaded_model = pickle.load(open(save_file_name, 'rb')) # app=FastAPI() # test_data=pd.read_csv("test.csv") # f1_metric = prom.Gauge('death_f1_score', 'F1 score for test samples') # Function for updating metrics # def update_metrics(): # test = test_data.sample(20) # X = test.iloc[:, :-1].values # y = test['DEATH_EVENT'].values # # test_text = test['Text'].values # test_pred = loaded_model.predict(X) # #pred_labels = [int(pred['label'].split("_")[1]) for pred in test_pred] # f1 = f1_score( y , test_pred).round(3) # #f1 = f1_score(test['labels'], pred_labels).round(3) # f1_metric.set(f1) vitgpt_processor = ViTImageProcessor.from_pretrained("model") vitgpt_model = VisionEncoderDecoderModel.from_pretrained("model") vitgpt_tokenizer = AutoTokenizer.from_pretrained("model", return_tensors="pt") device = "cuda" if torch.cuda.is_available() else "cpu" vitgpt_model.to(device) def generate_caption(processor, model, image, tokenizer=None): inputs = processor(images=image, return_tensors="pt").to(device) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) if tokenizer is not None: generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] else: generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption def predict_event(input): caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer) return caption_vitgpt # @app.get("/metrics") # async def get_metrics(): # update_metrics() # return Response(media_type="text/plain", content= prom.generate_latest()) title = "capstone" description = "final capstone" out_response = gr.outputs.Textbox(label="Caption generated by ViT+GPT-2") iface = gr.Interface(fn=predict_event, inputs=gr.inputs.Image(type="pil"), outputs=out_response, enable_queue=True) # app = gr.mount_gradio_app(app, iface, path="/") iface.launch(server_name = "0.0.0.0", server_port = 8001) # if __name__ == "__main__": # Use this for debugging purposes only # uvicorn.run(app, host="0.0.0.0", port=8001)