import gradio as gr import pickle import numpy as np from fastapi import FastAPI,Response from sklearn.metrics import accuracy_score, f1_score import prometheus_client as prom import pandas as pd # from transformers import pipeline #model save_file_name="xgboost-model.pkl" loaded_model = pickle.load(open(save_file_name, 'rb')) app=FastAPI() # username="ashwml" # repo_name="prometheus_model" # model=username+'/'+repo_name test_data=pd.read_csv("test.csv") f1_metric = prom.Gauge('death_f1_score', 'F1 score for test samples') # Function for updating metrics def update_metrics(): test = test_data.sample(20) X = test.iloc[:, :-1].values y = test['DEATH_EVENT'].values # test_text = test['Text'].values test_pred = loaded_model.predict(X) #pred_labels = [int(pred['label'].split("_")[1]) for pred in test_pred] f1 = f1_score( y , test_pred).round(3) #f1 = f1_score(test['labels'], pred_labels).round(3) f1_metric.set(f1) def predict_death_event(age, anaemia, creatinine_phosphokinase ,diabetes ,ejection_fraction, high_blood_pressure ,platelets ,serum_creatinine, serum_sodium, sex ,smoking ,time): input=[[age, anaemia, creatinine_phosphokinase ,diabetes ,ejection_fraction, high_blood_pressure ,platelets ,serum_creatinine, serum_sodium, sex ,smoking ,time]] result=loaded_model.predict(input) if result[0]==1: return 'Positive' else: return 'Negative' return result @app.get("/metrics") async def get_metrics(): update_metrics() return Response(media_type="text/plain", content= prom.generate_latest()) title = "Patient Survival Prediction" description = "Predict survival of patient with heart failure, given their clinical record" out_response = gr.components.Textbox(type="text", label='Death_event') iface = gr.Interface(fn=predict_death_event, inputs=[ gr.Slider(18, 100, value=20, label="Age"), gr.Slider(0, 1, value=1, label="anaemia"), gr.Slider(100, 2000, value=20, label="creatinine_phosphokinase"), gr.Slider(0, 1, value=1, label="diabetes"), gr.Slider(18, 100, value=20, label="ejection_fraction"), gr.Slider(0, 1, value=1, label="high_blood_pressure"), gr.Slider(18, 400000, value=20, label="platelets"), gr.Slider(1, 10, value=20, label="serum_creatinine"), gr.Slider(100, 200, value=20, label="serum_sodium"), gr.Slider(0, 1, value=1, label="sex"), gr.Slider(0, 1, value=1, label="smoking"), gr.Slider(1, 10, value=20, label="time"), ], outputs = [out_response]) app = gr.mount_gradio_app(app, iface, path="/") # iface.launch(server_name = "0.0.0.0", server_port = 8001) if __name__ == "__main__": # Use this for debugging purposes only import uvicorn uvicorn.run(app, host="0.0.0.0", port=8001)