|
import gradio as gr |
|
import pickle |
|
import numpy as np |
|
|
|
|
|
|
|
save_file_name="xgboost-model.pkl" |
|
loaded_model = pickle.load(open(save_file_name, 'rb')) |
|
def predict_death_event(age, anaemia, creatinine_phosphokinase ,diabetes ,ejection_fraction, high_blood_pressure ,platelets ,serum_creatinine, serum_sodium, sex ,smoking ,time): |
|
input=[[age, anaemia, creatinine_phosphokinase ,diabetes ,ejection_fraction, high_blood_pressure ,platelets ,serum_creatinine, serum_sodium, sex ,smoking ,time]] |
|
result=loaded_model.predict(input) |
|
|
|
if result[0]==1: |
|
return 'Positive' |
|
else: |
|
return 'Negative' |
|
return result |
|
|
|
|
|
|
|
title = "Patient Survival Prediction" |
|
description = "Predict survival of patient with heart failure, given their clinical record" |
|
|
|
out_response = gr.components.Textbox(type="text", label='Death_event') |
|
|
|
iface = gr.Interface(fn=predict_death_event, |
|
inputs=[ |
|
gr.Slider(18, 100, value=20, label="Age"), |
|
gr.Slider(0, 1, value=1, label="anaemia"), |
|
gr.Slider(100, 2000, value=20, label="creatinine_phosphokinase"), |
|
gr.Slider(0, 1, value=1, label="diabetes"), |
|
gr.Slider(18, 100, value=20, label="ejection_fraction"), |
|
gr.Slider(0, 1, value=1, label="high_blood_pressure"), |
|
gr.Slider(18, 400000, value=20, label="platelets"), |
|
gr.Slider(1, 10, value=20, label="serum_creatinine"), |
|
gr.Slider(100, 200, value=20, label="serum_sodium"), |
|
gr.Slider(0, 1, value=1, label="sex"), |
|
gr.Slider(0, 1, value=1, label="smoking"), |
|
gr.Slider(1, 10, value=20, label="time"), |
|
], |
|
outputs = [out_response]) |
|
iface.launch() |
|
|
|
|
|
|
|
|