Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#====================================================================
|
2 |
+
# https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer
|
3 |
+
#====================================================================
|
4 |
+
|
5 |
+
"""
|
6 |
+
Orpheus Music Transformer Gradio App - Single Model, Simplified Version
|
7 |
+
SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs
|
8 |
+
Using one model which was trained for 3 full epochs"
|
9 |
+
"""
|
10 |
+
|
11 |
+
import os
|
12 |
+
|
13 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
14 |
+
|
15 |
+
import time as reqtime
|
16 |
+
import datetime
|
17 |
+
from pytz import timezone
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import gradio as gr
|
22 |
+
import spaces
|
23 |
+
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
import TMIDIX
|
26 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
27 |
+
from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder
|
28 |
+
|
29 |
+
# -----------------------------
|
30 |
+
# CONFIGURATION & GLOBALS
|
31 |
+
# -----------------------------
|
32 |
+
SEP = '=' * 70
|
33 |
+
PDT = timezone('US/Pacific')
|
34 |
+
|
35 |
+
MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_No_Velocity_Trained_Model_21113_steps_0.3454_loss_0.895_acc.pth'
|
36 |
+
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
37 |
+
NUM_OUT_BATCHES = 12
|
38 |
+
PREVIEW_LENGTH = 120 # in tokens
|
39 |
+
|
40 |
+
# -----------------------------
|
41 |
+
# PRINT START-UP INFO
|
42 |
+
# -----------------------------
|
43 |
+
def print_sep():
|
44 |
+
print(SEP)
|
45 |
+
|
46 |
+
print_sep()
|
47 |
+
print("Orpheus Music Transformer Gradio App")
|
48 |
+
print_sep()
|
49 |
+
print("Loading modules...")
|
50 |
+
|
51 |
+
# -----------------------------
|
52 |
+
# ENVIRONMENT & PyTorch Settings
|
53 |
+
# -----------------------------
|
54 |
+
os.environ['USE_FLASH_ATTENTION'] = '1'
|
55 |
+
|
56 |
+
torch.set_float32_matmul_precision('high')
|
57 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
58 |
+
torch.backends.cudnn.allow_tf32 = True
|
59 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
60 |
+
torch.backends.cuda.enable_math_sdp(True)
|
61 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
62 |
+
torch.backends.cuda.enable_cudnn_sdp(True)
|
63 |
+
|
64 |
+
print_sep()
|
65 |
+
print("PyTorch version:", torch.__version__)
|
66 |
+
print("Done loading modules!")
|
67 |
+
print_sep()
|
68 |
+
|
69 |
+
# -----------------------------
|
70 |
+
# MODEL INITIALIZATION
|
71 |
+
# -----------------------------
|
72 |
+
print_sep()
|
73 |
+
print("Instantiating model...")
|
74 |
+
|
75 |
+
device_type = 'cuda'
|
76 |
+
dtype = 'bfloat16'
|
77 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
78 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
79 |
+
|
80 |
+
SEQ_LEN = 4096
|
81 |
+
PAD_IDX = 384
|
82 |
+
|
83 |
+
model = TransformerWrapper(
|
84 |
+
num_tokens=PAD_IDX + 1,
|
85 |
+
max_seq_len=SEQ_LEN,
|
86 |
+
attn_layers=Decoder(
|
87 |
+
dim=2048,
|
88 |
+
depth=16,
|
89 |
+
heads=32,
|
90 |
+
rotary_pos_emb=True,
|
91 |
+
attn_flash=True
|
92 |
+
)
|
93 |
+
)
|
94 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
95 |
+
|
96 |
+
print_sep()
|
97 |
+
print("Loading model checkpoint...")
|
98 |
+
checkpoint = hf_hub_download(
|
99 |
+
repo_id='asigalov61/Orpheus-Music-Transformer',
|
100 |
+
filename=MODEL_CHECKPOINT
|
101 |
+
)
|
102 |
+
model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True))
|
103 |
+
model = torch.compile(model, mode='max-autotune')
|
104 |
+
print_sep()
|
105 |
+
print("Done!")
|
106 |
+
print("Model will use", dtype, "precision...")
|
107 |
+
print_sep()
|
108 |
+
|
109 |
+
model.cuda()
|
110 |
+
model.eval()
|
111 |
+
|
112 |
+
# -----------------------------
|
113 |
+
# HELPER FUNCTIONS
|
114 |
+
# -----------------------------
|
115 |
+
def render_midi_output(final_composition):
|
116 |
+
"""Generate MIDI score, plot, and audio from final composition."""
|
117 |
+
fname, midi_score = save_midi(final_composition)
|
118 |
+
time_val = midi_score[-1][1] / 1000 # seconds marker from last note
|
119 |
+
midi_plot = TMIDIX.plot_ms_SONG(
|
120 |
+
midi_score,
|
121 |
+
plot_title='Orpheus Music Transformer Composition',
|
122 |
+
block_lines_times_list=[],
|
123 |
+
return_plt=True
|
124 |
+
)
|
125 |
+
midi_audio = midi_to_colab_audio(
|
126 |
+
fname + '.mid',
|
127 |
+
soundfont_path=SOUDFONT_PATH,
|
128 |
+
sample_rate=16000,
|
129 |
+
output_for_gradio=True
|
130 |
+
)
|
131 |
+
return (16000, midi_audio), midi_plot, fname + '.mid', time_val
|
132 |
+
|
133 |
+
# -----------------------------
|
134 |
+
# MIDI PROCESSING FUNCTIONS
|
135 |
+
# -----------------------------
|
136 |
+
def load_midi(input_midi):
|
137 |
+
"""Process the input MIDI file and create a token sequence using without velocity logic."""
|
138 |
+
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
139 |
+
escore_notes = TMIDIX.advanced_score_processor(
|
140 |
+
raw_score, return_enhanced_score_notes=True, apply_sustain=True
|
141 |
+
)[0]
|
142 |
+
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes)
|
143 |
+
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
|
144 |
+
zscore = TMIDIX.augment_enhanced_score_notes(zscore, timings_divider=32)
|
145 |
+
fscore = TMIDIX.fix_escore_notes_durations(zscore)
|
146 |
+
cscore = TMIDIX.chordify_score([1000, fscore])
|
147 |
+
|
148 |
+
score = []
|
149 |
+
prev_chord = cscore[0]
|
150 |
+
for chord in cscore:
|
151 |
+
# Time difference token.
|
152 |
+
score.append(max(0, min(127, chord[0][1] - prev_chord[0][1])))
|
153 |
+
for note in chord:
|
154 |
+
score.extend([
|
155 |
+
max(1, min(127, note[2])) + 128,
|
156 |
+
max(1, min(127, note[4])) + 256
|
157 |
+
])
|
158 |
+
prev_chord = chord
|
159 |
+
return score
|
160 |
+
|
161 |
+
def save_midi(tokens, batch_number=None):
|
162 |
+
"""Convert token sequence back to a MIDI score and write it using TMIDIX (without velocity).
|
163 |
+
The output MIDI file name incorporates a date-time stamp.
|
164 |
+
"""
|
165 |
+
song_events = []
|
166 |
+
time_marker = 0
|
167 |
+
duration = 0
|
168 |
+
pitch = 0
|
169 |
+
patches = [0] * 16
|
170 |
+
|
171 |
+
for token in tokens:
|
172 |
+
if 0 <= token < 128:
|
173 |
+
time_marker += token * 32
|
174 |
+
elif 128 <= token < 256:
|
175 |
+
duration = (token - 128) * 32
|
176 |
+
elif 256 <= token < 384:
|
177 |
+
pitch = token - 256
|
178 |
+
song_events.append(['note', time_marker, duration, 0, pitch, max(40, pitch), 0])
|
179 |
+
# No velocity tokens are used.
|
180 |
+
|
181 |
+
# Generate a time stamp using the PDT timezone.
|
182 |
+
timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S")
|
183 |
+
|
184 |
+
'''if batch_number is None:
|
185 |
+
fname = f"Orpheus-Music-Transformer-Music-Composition_{timestamp}"
|
186 |
+
else:
|
187 |
+
fname = f"Orpheus-Music-Transformer-Music-Composition_{timestamp}_Batch_{batch_number}"'''
|
188 |
+
|
189 |
+
fname = f"Orpheus-Music-Transformer-Music-Composition"
|
190 |
+
|
191 |
+
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
192 |
+
song_events,
|
193 |
+
output_signature='Orpheus Music Transformer',
|
194 |
+
output_file_name=fname,
|
195 |
+
track_name='Project Los Angeles',
|
196 |
+
list_of_MIDI_patches=patches,
|
197 |
+
verbose=False
|
198 |
+
)
|
199 |
+
return fname, song_events
|
200 |
+
|
201 |
+
# -----------------------------
|
202 |
+
# MUSIC GENERATION FUNCTION (Combined)
|
203 |
+
# -----------------------------
|
204 |
+
@spaces.GPU
|
205 |
+
def generate_music(prime, num_gen_tokens, num_mem_tokens, num_gen_batches, model_temperature):
|
206 |
+
"""Generate music tokens given prime tokens and parameters."""
|
207 |
+
inputs = prime[-num_mem_tokens:] if prime else [0]
|
208 |
+
print("Generating...")
|
209 |
+
inp = torch.LongTensor([inputs] * num_gen_batches).cuda()
|
210 |
+
with ctx:
|
211 |
+
out = model.generate(
|
212 |
+
inp,
|
213 |
+
num_gen_tokens,
|
214 |
+
temperature=model_temperature,
|
215 |
+
return_prime=False,
|
216 |
+
verbose=False
|
217 |
+
)
|
218 |
+
print("Done!")
|
219 |
+
print_sep()
|
220 |
+
return out.tolist()
|
221 |
+
|
222 |
+
def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens,
|
223 |
+
model_temperature, final_composition, generated_batches, block_lines):
|
224 |
+
"""
|
225 |
+
Generate tokens using the model, update the composition state, and prepare outputs.
|
226 |
+
This function combines seed loading, token generation, and UI output packaging.
|
227 |
+
"""
|
228 |
+
print_sep()
|
229 |
+
print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
|
230 |
+
|
231 |
+
print('=' * 70)
|
232 |
+
if input_midi is not None:
|
233 |
+
fn = os.path.basename(input_midi.name)
|
234 |
+
fn1 = fn.split('.')[0]
|
235 |
+
print('Input file name:', fn)
|
236 |
+
|
237 |
+
print('Num prime tokens:', num_prime_tokens)
|
238 |
+
print('Num gen tokens:', num_gen_tokens)
|
239 |
+
print('Num mem tokens:', num_mem_tokens)
|
240 |
+
|
241 |
+
print('Model temp:', model_temperature)
|
242 |
+
print('=' * 70)
|
243 |
+
|
244 |
+
# Load seed from MIDI if there is no existing composition.
|
245 |
+
if not final_composition and input_midi is not None:
|
246 |
+
final_composition = load_midi(input_midi)[:num_prime_tokens]
|
247 |
+
midi_fname, midi_score = save_midi(final_composition)
|
248 |
+
# Use the last note's time as a marker.
|
249 |
+
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
250 |
+
midi_score,
|
251 |
+
output_signature='Orpheus Music Transformer',
|
252 |
+
output_file_name=midi_fname,
|
253 |
+
track_name='Project Los Angeles',
|
254 |
+
list_of_MIDI_patches=[0]*16,
|
255 |
+
verbose=False
|
256 |
+
)
|
257 |
+
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
|
258 |
+
|
259 |
+
batched_gen_tokens = generate_music(final_composition, num_gen_tokens, num_mem_tokens,
|
260 |
+
NUM_OUT_BATCHES, model_temperature)
|
261 |
+
|
262 |
+
output_batches = []
|
263 |
+
for i, tokens in enumerate(batched_gen_tokens):
|
264 |
+
preview_tokens = final_composition[-PREVIEW_LENGTH:]
|
265 |
+
midi_fname, midi_score = save_midi(preview_tokens + tokens, batch_number=i)
|
266 |
+
plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True}
|
267 |
+
if len(final_composition) > PREVIEW_LENGTH:
|
268 |
+
plot_kwargs['preview_length_in_notes'] = len([t for t in preview_tokens if t > 256])
|
269 |
+
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
270 |
+
midi_score,
|
271 |
+
output_signature='Orpheus Music Transformer',
|
272 |
+
output_file_name=midi_fname,
|
273 |
+
track_name='Project Los Angeles',
|
274 |
+
list_of_MIDI_patches=[0]*16,
|
275 |
+
verbose=False
|
276 |
+
)
|
277 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs)
|
278 |
+
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
|
279 |
+
soundfont_path=SOUDFONT_PATH,
|
280 |
+
sample_rate=16000,
|
281 |
+
output_for_gradio=True)
|
282 |
+
output_batches.append([(16000, midi_audio), midi_plot, tokens])
|
283 |
+
|
284 |
+
# Update generated_batches (for use by add/remove functions)
|
285 |
+
generated_batches = batched_gen_tokens
|
286 |
+
|
287 |
+
print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
|
288 |
+
print_sep()
|
289 |
+
|
290 |
+
# Flatten outputs: states then audio and plots for each batch.
|
291 |
+
outputs_flat = []
|
292 |
+
for batch in output_batches:
|
293 |
+
outputs_flat.extend([batch[0], batch[1]])
|
294 |
+
return [final_composition, generated_batches, block_lines] + outputs_flat
|
295 |
+
|
296 |
+
# -----------------------------
|
297 |
+
# BATCH HANDLING FUNCTIONS
|
298 |
+
# -----------------------------
|
299 |
+
def add_batch(batch_number, final_composition, generated_batches, block_lines):
|
300 |
+
"""Add tokens from the specified batch to the final composition and update outputs."""
|
301 |
+
if generated_batches:
|
302 |
+
final_composition.extend(generated_batches[batch_number])
|
303 |
+
midi_fname, midi_score = save_midi(final_composition)
|
304 |
+
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
|
305 |
+
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
306 |
+
midi_score,
|
307 |
+
output_signature='Orpheus Music Transformer',
|
308 |
+
output_file_name=midi_fname,
|
309 |
+
track_name='Project Los Angeles',
|
310 |
+
list_of_MIDI_patches=[0]*16,
|
311 |
+
verbose=False
|
312 |
+
)
|
313 |
+
midi_plot = TMIDIX.plot_ms_SONG(
|
314 |
+
midi_score,
|
315 |
+
plot_title='Orpheus Music Transformer Composition',
|
316 |
+
block_lines_times_list=block_lines[:-1],
|
317 |
+
return_plt=True
|
318 |
+
)
|
319 |
+
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
|
320 |
+
soundfont_path=SOUDFONT_PATH,
|
321 |
+
sample_rate=16000,
|
322 |
+
output_for_gradio=True)
|
323 |
+
print("Added batch #", batch_number)
|
324 |
+
print_sep()
|
325 |
+
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
|
326 |
+
else:
|
327 |
+
return None, None, None, [], [], []
|
328 |
+
|
329 |
+
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines):
|
330 |
+
"""Remove tokens from the final composition and update outputs."""
|
331 |
+
if final_composition and len(final_composition) > num_tokens:
|
332 |
+
final_composition = final_composition[:-num_tokens]
|
333 |
+
if block_lines:
|
334 |
+
block_lines.pop()
|
335 |
+
midi_fname, midi_score = save_midi(final_composition)
|
336 |
+
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
337 |
+
midi_score,
|
338 |
+
output_signature='Orpheus Music Transformer',
|
339 |
+
output_file_name=midi_fname,
|
340 |
+
track_name='Project Los Angeles',
|
341 |
+
list_of_MIDI_patches=[0]*16,
|
342 |
+
verbose=False
|
343 |
+
)
|
344 |
+
midi_plot = TMIDIX.plot_ms_SONG(
|
345 |
+
midi_score,
|
346 |
+
plot_title='Orpheus Music Transformer Composition',
|
347 |
+
block_lines_times_list=block_lines[:-1],
|
348 |
+
return_plt=True
|
349 |
+
)
|
350 |
+
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
|
351 |
+
soundfont_path=SOUDFONT_PATH,
|
352 |
+
sample_rate=16000,
|
353 |
+
output_for_gradio=True)
|
354 |
+
print("Removed batch #", batch_number)
|
355 |
+
print_sep()
|
356 |
+
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
|
357 |
+
else:
|
358 |
+
return None, None, None, [], [], []
|
359 |
+
|
360 |
+
def clear():
|
361 |
+
"""Clear outputs and reset state."""
|
362 |
+
return None, None, None, [], []
|
363 |
+
|
364 |
+
def reset(final_composition=[], generated_batches=[], block_lines=[]):
|
365 |
+
"""Reset composition state."""
|
366 |
+
return [], [], []
|
367 |
+
|
368 |
+
# -----------------------------
|
369 |
+
# GRADIO INTERFACE SETUP
|
370 |
+
# -----------------------------
|
371 |
+
with gr.Blocks() as demo:
|
372 |
+
|
373 |
+
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Music Transformer</h1>")
|
374 |
+
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs</h1>")
|
375 |
+
gr.HTML("""
|
376 |
+
Check out <a href="https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset">Godzilla MIDI Dataset</a> on Hugging Face
|
377 |
+
<p>
|
378 |
+
<a href="https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true">
|
379 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
|
380 |
+
</a>
|
381 |
+
</p>
|
382 |
+
for faster execution and endless generation!
|
383 |
+
""")
|
384 |
+
|
385 |
+
gr.Markdown("## Key Features")
|
386 |
+
gr.Markdown("""
|
387 |
+
- **Efficient Architecture with RoPE**: Compact and very fast 479M full attention autoregressive transformer with RoPE.
|
388 |
+
- **Extended Sequence Length**: 8k tokens that comfortably fit most music compositions and facilitate long-term music structure generation.
|
389 |
+
- **Premium Training Data**: Exclusively trained on high-quality MIDIs from the Godzilla MIDI dataset.
|
390 |
+
- **Optimized MIDI Encoding**: Extremely efficient MIDI representation using only 3 tokens per note and 7 tokens per tri-chord.
|
391 |
+
- **Distinct Encoding Order**: Features a unique duration/velocity last MIDI encoding order for refined musical expression.
|
392 |
+
- **Full-Range Instrumental Learning**: True full-range MIDI instruments encoding enabling the model to learn each instrument separately.
|
393 |
+
- **Natural Composition Endings**: Outro tokens that help generate smooth and natural musical conclusions.
|
394 |
+
""")
|
395 |
+
|
396 |
+
# Global state variables for composition
|
397 |
+
final_composition = gr.State([])
|
398 |
+
generated_batches = gr.State([])
|
399 |
+
block_lines = gr.State([])
|
400 |
+
|
401 |
+
gr.Markdown("## Upload seed MIDI or click 'Generate' for a random output")
|
402 |
+
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
403 |
+
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
|
404 |
+
[final_composition, generated_batches, block_lines])
|
405 |
+
|
406 |
+
gr.Markdown("## Generate")
|
407 |
+
num_prime_tokens = gr.Slider(15, 3072, value=3072, step=1, label="Number of prime tokens")
|
408 |
+
num_gen_tokens = gr.Slider(15, 1024, value=512, step=1, label="Number of tokens to generate")
|
409 |
+
num_mem_tokens = gr.Slider(15, 4096, value=4096, step=1, label="Number of memory tokens")
|
410 |
+
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
|
411 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
412 |
+
|
413 |
+
gr.Markdown("## Batch Previews")
|
414 |
+
outputs = [final_composition, generated_batches, block_lines]
|
415 |
+
# Two outputs (audio and plot) for each batch
|
416 |
+
for i in range(NUM_OUT_BATCHES):
|
417 |
+
with gr.Tab(f"Batch # {i}"):
|
418 |
+
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3")
|
419 |
+
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
|
420 |
+
outputs.extend([audio_output, plot_output])
|
421 |
+
generate_btn.click(
|
422 |
+
generate_music_and_state,
|
423 |
+
[input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, model_temperature,
|
424 |
+
final_composition, generated_batches, block_lines],
|
425 |
+
outputs
|
426 |
+
)
|
427 |
+
|
428 |
+
gr.Markdown("## Add/Remove Batch")
|
429 |
+
batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove")
|
430 |
+
add_btn = gr.Button("Add batch", variant="primary")
|
431 |
+
remove_btn = gr.Button("Remove batch", variant="stop")
|
432 |
+
clear_btn = gr.ClearButton()
|
433 |
+
|
434 |
+
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3")
|
435 |
+
final_plot_output = gr.Plot(label="Final MIDI plot")
|
436 |
+
final_file_output = gr.File(label="Final MIDI file")
|
437 |
+
|
438 |
+
add_btn.click(
|
439 |
+
add_batch,
|
440 |
+
[batch_number, final_composition, generated_batches, block_lines],
|
441 |
+
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
|
442 |
+
)
|
443 |
+
remove_btn.click(
|
444 |
+
remove_batch,
|
445 |
+
[batch_number, num_gen_tokens, final_composition, generated_batches, block_lines],
|
446 |
+
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
|
447 |
+
)
|
448 |
+
clear_btn.click(clear, inputs=None,
|
449 |
+
outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines])
|
450 |
+
|
451 |
+
demo.launch()
|