Hunyuan3D-2.1 / gradio_app.py
asimfayaz's picture
Set GPU function durations to 180 seconds for better reliability
b73c7e6
raw
history blame
46.8 kB
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
# Apply torchvision compatibility fix before other imports
import sys
sys.path.insert(0, './hy3dshape')
sys.path.insert(0, './hy3dpaint')
pythonpath = sys.executable
print(pythonpath)
try:
from torchvision_fix import apply_fix
apply_fix()
except ImportError:
print("Warning: torchvision_fix module not found, proceeding without compatibility fix")
except Exception as e:
print(f"Warning: Failed to apply torchvision fix: {e}")
import os
import random
import shutil
import subprocess
import time
from glob import glob
from pathlib import Path
import base64
import json
import threading
from typing import Dict, Optional, Any
from enum import Enum
import gradio as gr
import torch
import trimesh
import uvicorn
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import uuid
import numpy as np
from PIL import Image
import io
from hy3dshape.utils import logger
from hy3dpaint.convert_utils import create_glb_with_pbr_materials
# API Models
class JobStatus(Enum):
QUEUED = "queued"
PROCESSING = "processing"
COMPLETED = "completed"
FAILED = "failed"
class GenerateRequest(BaseModel):
images: Dict[str, str] # base64 encoded images
options: Dict[str, Any] = {
"enable_pbr": True,
"should_remesh": True,
"should_texture": True
}
class JobInfo:
def __init__(self, job_id: str):
self.job_id = job_id
self.status = JobStatus.QUEUED
self.progress = 0
self.start_time = time.time()
self.end_time = None
self.error_message = None
self.model_urls = {}
self.images = {}
self.options = {}
# Global job storage
jobs: Dict[str, JobInfo] = {}
def create_job() -> str:
"""Create a new job and return its ID."""
job_id = str(uuid.uuid4())
jobs[job_id] = JobInfo(job_id)
return job_id
def update_job_status(job_id: str, status: JobStatus, progress: int = None, error_message: str = None):
"""Update job status and progress."""
if job_id in jobs:
jobs[job_id].status = status
if progress is not None:
jobs[job_id].progress = progress
if error_message is not None:
jobs[job_id].error_message = error_message
if status in [JobStatus.COMPLETED, JobStatus.FAILED]:
jobs[job_id].end_time = time.time()
def base64_to_pil_image(base64_string: str) -> Image.Image:
"""Convert base64 string to PIL Image."""
try:
# Remove data URL prefix if present
if base64_string.startswith('data:image'):
base64_string = base64_string.split(',')[1]
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
return image
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid image data: {str(e)}")
def process_generation_job(job_id: str, images: Dict[str, str], options: Dict[str, Any]):
"""Background task to process generation job."""
global face_reduce_worker, tex_pipeline, HAS_TEXTUREGEN, SAVE_DIR
try:
update_job_status(job_id, JobStatus.PROCESSING, progress=10)
# Convert base64 images to PIL Images
pil_images = {}
for view, base64_img in images.items():
pil_images[view] = base64_to_pil_image(base64_img)
# Extract options
enable_pbr = options.get("enable_pbr", True)
should_remesh = options.get("should_remesh", True)
should_texture = options.get("should_texture", True)
update_job_status(job_id, JobStatus.PROCESSING, progress=20)
# Generate 3D mesh
# For non-MV mode, use the front image as the main image, or the first available image
main_image = pil_images.get('front')
if main_image is None and pil_images:
# If no front image, use the first available image
main_image = next(iter(pil_images.values()))
mesh, main_image, save_folder, stats, seed = _gen_shape(
caption=None,
image=main_image,
mv_image_front=pil_images.get('front'),
mv_image_back=pil_images.get('back'),
mv_image_left=pil_images.get('left'),
mv_image_right=pil_images.get('right'),
steps=30,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=True,
num_chunks=200000,
randomize_seed=False,
)
update_job_status(job_id, JobStatus.PROCESSING, progress=50)
# Export white mesh
white_mesh_path = export_mesh(mesh, save_folder, textured=False, type='obj')
# Face reduction
mesh = face_reduce_worker(mesh)
reduced_mesh_path = export_mesh(mesh, save_folder, textured=False, type='obj')
update_job_status(job_id, JobStatus.PROCESSING, progress=70)
# Texture generation if enabled
textured_mesh_path = None
if should_texture and HAS_TEXTUREGEN:
try:
text_path = os.path.join(save_folder, 'textured_mesh.obj')
# Use GPU function for texture generation with lazy initialization
textured_mesh_path = generate_texture_lazy(
mesh_path=reduced_mesh_path,
image_path=main_image,
output_mesh_path=text_path
)
if textured_mesh_path:
# Convert to GLB
glb_path_textured = os.path.join(save_folder, 'textured_mesh.glb')
quick_convert_with_obj2gltf(textured_mesh_path, glb_path_textured)
textured_mesh_path = glb_path_textured
except Exception as e:
logger.error(f"Texture generation failed: {e}")
textured_mesh_path = None
update_job_status(job_id, JobStatus.PROCESSING, progress=90)
# Prepare model URLs
model_urls = {}
if textured_mesh_path and os.path.exists(textured_mesh_path):
model_urls["glb"] = f"/static/{os.path.relpath(textured_mesh_path, SAVE_DIR)}"
else:
# Fallback to white mesh
white_glb_path = export_mesh(mesh, save_folder, textured=False, type='glb')
model_urls["glb"] = f"/static/{os.path.relpath(white_glb_path, SAVE_DIR)}"
# Update job with results
jobs[job_id].model_urls = model_urls
update_job_status(job_id, JobStatus.COMPLETED, progress=100)
except Exception as e:
logger.error(f"Job {job_id} failed: {e}")
update_job_status(job_id, JobStatus.FAILED, error_message=str(e))
MAX_SEED = 1e7
ENV = "Huggingface" # "Huggingface"
if ENV == 'Huggingface':
"""
Setup environment for running on Huggingface platform.
This block performs the following:
- Changes directory to the differentiable renderer folder and runs a shell
script to compile the mesh painter.
- Installs a custom rasterizer wheel package via pip.
Note:
This setup assumes the script is running in the Huggingface environment
with the specified directory structure.
"""
import os, spaces, subprocess, sys, shlex
from spaces import zero
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
def prepare_env():
# print('install custom')
# os.system(f"cd /home/user/app/hy3dpaint/custom_rasterizer && {pythonpath} -m pip install -e .")
# os.system(f"cd /home/user/app/hy3dpaint/packages/custom_rasterizer && pip install -e .")
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
print("cd /home/user/app/hy3dpaint/differentiable_renderer/ && bash compile_mesh_painter.sh")
os.system("cd /home/user/app/hy3dpaint/DifferentiableRenderer && bash compile_mesh_painter.sh")
# print("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /home/user/app/hy3dpaint/ckpt")
# os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /home/user/app/hy3dpaint/ckpt")
def check():
import custom_rasterizer
print(type(custom_rasterizer))
print(dir(custom_rasterizer))
print(getattr(custom_rasterizer, '__file__', None))
package_dir = None
if hasattr(custom_rasterizer, '__file__') and custom_rasterizer.__file__:
package_dir = os.path.dirname(custom_rasterizer.__file__)
elif hasattr(custom_rasterizer, '__path__'):
package_dir = list(custom_rasterizer.__path__)[0]
else:
raise RuntimeError("Cannot determine package path")
print(package_dir)
for root, dirs, files in os.walk(package_dir):
level = root.replace(package_dir, '').count(os.sep)
indent = ' ' * 4 * level
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
# print(torch.__version__)
# install_cuda_toolkit()
print(torch.__version__)
prepare_env()
check()
else:
"""
Define a dummy `spaces` module with a GPU decorator class for local environment.
The GPU decorator is a no-op that simply returns the decorated function unchanged.
This allows code that uses the `spaces.GPU` decorator to run without modification locally.
"""
class spaces:
class GPU:
def __init__(self, duration=60):
self.duration = duration
def __call__(self, func):
return func
def get_example_img_list():
"""
Load and return a sorted list of example image file paths.
Searches recursively for PNG images under the './assets/example_images/' directory.
Returns:
list[str]: Sorted list of file paths to example PNG images.
"""
print('Loading example img list ...')
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
def get_example_txt_list():
"""
Load and return a list of example text prompts.
Reads lines from the './assets/example_prompts.txt' file, stripping whitespace.
Returns:
list[str]: List of example text prompts.
"""
print('Loading example txt list ...')
txt_list = list()
for line in open('./assets/example_prompts.txt', encoding='utf-8'):
txt_list.append(line.strip())
return txt_list
def gen_save_folder(max_size=200):
"""
Generate a new save folder inside SAVE_DIR, maintaining a maximum number of folders.
If the number of existing folders in SAVE_DIR exceeds `max_size`, the oldest folder is removed.
Args:
max_size (int, optional): Maximum number of folders to keep in SAVE_DIR. Defaults to 200.
Returns:
str: Path to the newly created save folder.
"""
os.makedirs(SAVE_DIR, exist_ok=True)
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
if len(dirs) >= max_size:
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
# Removed complex PBR conversion functions - using simple trimesh-based conversion
def export_mesh(mesh, save_folder, textured=False, type='glb'):
"""
Export a mesh to a file in the specified folder, optionally including textures.
Args:
mesh (trimesh.Trimesh): The mesh object to export.
save_folder (str): Directory path where the mesh file will be saved.
textured (bool, optional): Whether to include textures/normals in the export. Defaults to False.
type (str, optional): File format to export ('glb' or 'obj' supported). Defaults to 'glb'.
Returns:
str: The full path to the exported mesh file.
"""
if textured:
path = os.path.join(save_folder, f'textured_mesh.{type}')
else:
path = os.path.join(save_folder, f'white_mesh.{type}')
if type not in ['glb', 'obj']:
mesh.export(path)
else:
mesh.export(path, include_normals=textured)
return path
def quick_convert_with_obj2gltf(obj_path: str, glb_path: str) -> bool:
# 执行转换
textures = {
'albedo': obj_path.replace('.obj', '.jpg'),
'metallic': obj_path.replace('.obj', '_metallic.jpg'),
'roughness': obj_path.replace('.obj', '_roughness.jpg')
}
create_glb_with_pbr_materials(obj_path, textures, glb_path)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
# Remove first folder from path to make relative path
if textured:
related_path = f"./textured_mesh.glb"
template_name = './assets/modelviewer-textured-template.html'
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
else:
related_path = f"./white_mesh.glb"
template_name = './assets/modelviewer-template.html'
output_html_path = os.path.join(save_folder, f'white_mesh.html')
offset = 50 if textured else 10
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f:
template_html = f.read()
with open(output_html_path, 'w', encoding='utf-8') as f:
template_html = template_html.replace('#height#', f'{height - offset}')
template_html = template_html.replace('#width#', f'{width}')
template_html = template_html.replace('#src#', f'{related_path}/')
f.write(template_html)
rel_path = os.path.relpath(output_html_path, SAVE_DIR)
iframe_tag = f'<iframe src="/static/{rel_path}" \
height="{height}" width="100%" frameborder="0"></iframe>'
print(f'Find html file {output_html_path}, \
{os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
return f"""
<div style='height: {height}; width: 100%;'>
{iframe_tag}
</div>
"""
@spaces.GPU(duration=60)
def _gen_shape(
caption=None,
image=None,
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
if not MV_MODE and image is None and caption is None:
raise gr.Error("Please provide either a caption or an image.")
if MV_MODE:
if mv_image_front is None and mv_image_back is None \
and mv_image_left is None and mv_image_right is None:
raise gr.Error("Please provide at least one view image.")
image = {}
if mv_image_front:
image['front'] = mv_image_front
if mv_image_back:
image['back'] = mv_image_back
if mv_image_left:
image['left'] = mv_image_left
if mv_image_right:
image['right'] = mv_image_right
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
if caption: print('prompt is', caption)
save_folder = gen_save_folder()
stats = {
'model': {
'shapegen': f'{args.model_path}/{args.subfolder}',
'texgen': f'{args.texgen_model_path}',
},
'params': {
'caption': caption,
'steps': steps,
'guidance_scale': guidance_scale,
'seed': seed,
'octree_resolution': octree_resolution,
'check_box_rembg': check_box_rembg,
'num_chunks': num_chunks,
}
}
time_meta = {}
if image is None:
start_time = time.time()
try:
image = t2i_worker(caption)
except Exception as e:
raise gr.Error(f"Text to 3D is disable. \
Please enable it by `python gradio_app.py --enable_t23d`.")
time_meta['text2image'] = time.time() - start_time
# remove disk io to make responding faster, uncomment at your will.
# image.save(os.path.join(save_folder, 'input.png'))
if MV_MODE:
start_time = time.time()
for k, v in image.items():
if check_box_rembg or v.mode == "RGB":
img = rmbg_worker(v.convert('RGB'))
image[k] = img
time_meta['remove background'] = time.time() - start_time
else:
if check_box_rembg or image.mode == "RGB":
start_time = time.time()
image = rmbg_worker(image.convert('RGB'))
time_meta['remove background'] = time.time() - start_time
# remove disk io to make responding faster, uncomment at your will.
# image.save(os.path.join(save_folder, 'rembg.png'))
# image to white model
start_time = time.time()
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh'
)
time_meta['shape generation'] = time.time() - start_time
logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time))
tmp_start = time.time()
mesh = export_to_trimesh(outputs)[0]
time_meta['export to trimesh'] = time.time() - tmp_start
stats['number_of_faces'] = mesh.faces.shape[0]
stats['number_of_vertices'] = mesh.vertices.shape[0]
stats['time'] = time_meta
main_image = image if not MV_MODE else image['front']
return mesh, main_image, save_folder, stats, seed
@spaces.GPU(duration=180)
def generation_all(
caption=None,
image=None,
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
start_time_0 = time.time()
mesh, image, save_folder, stats, seed = _gen_shape(
caption,
image,
mv_image_front=mv_image_front,
mv_image_back=mv_image_back,
mv_image_left=mv_image_left,
mv_image_right=mv_image_right,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
num_chunks=num_chunks,
randomize_seed=randomize_seed,
)
path = export_mesh(mesh, save_folder, textured=False)
print(path)
print('='*40)
# tmp_time = time.time()
# mesh = floater_remove_worker(mesh)
# mesh = degenerate_face_remove_worker(mesh)
# logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time))
# stats['time']['postprocessing'] = time.time() - tmp_time
tmp_time = time.time()
mesh = face_reduce_worker(mesh)
# path = export_mesh(mesh, save_folder, textured=False, type='glb')
path = export_mesh(mesh, save_folder, textured=False, type='obj') # 这样操作也会 core dump
logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time))
stats['time']['face reduction'] = time.time() - tmp_time
tmp_time = time.time()
text_path = os.path.join(save_folder, f'textured_mesh.obj')
path_textured = tex_pipeline(mesh_path=path, image_path=image, output_mesh_path=text_path, save_glb=False)
logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time))
stats['time']['texture generation'] = time.time() - tmp_time
tmp_time = time.time()
# Convert textured OBJ to GLB using obj2gltf with PBR support
glb_path_textured = os.path.join(save_folder, 'textured_mesh.glb')
conversion_success = quick_convert_with_obj2gltf(path_textured, glb_path_textured)
logger.info("---Convert textured OBJ to GLB takes %s seconds ---" % (time.time() - tmp_time))
stats['time']['convert textured OBJ to GLB'] = time.time() - tmp_time
stats['time']['total'] = time.time() - start_time_0
model_viewer_html_textured = build_model_viewer_html(save_folder,
height=HTML_HEIGHT,
width=HTML_WIDTH, textured=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
return (
gr.update(value=path),
gr.update(value=glb_path_textured),
model_viewer_html_textured,
stats,
seed,
)
@spaces.GPU(duration=180)
def generate_texture_lazy(mesh_path, image_path, output_mesh_path):
"""Generate texture for a mesh using lazy initialization to avoid CUDA startup issues."""
try:
# Lazy initialization of texture pipeline inside GPU function
from hy3dpaint.textureGenPipeline import Hunyuan3DPaintPipeline, Hunyuan3DPaintConfig
conf = Hunyuan3DPaintConfig(max_num_view=8, resolution=768)
conf.realesrgan_ckpt_path = "hy3dpaint/ckpt/RealESRGAN_x4plus.pth"
conf.multiview_cfg_path = "hy3dpaint/cfgs/hunyuan-paint-pbr.yaml"
conf.custom_pipeline = "hy3dpaint/hunyuanpaintpbr"
# Initialize texture pipeline inside GPU function
local_tex_pipeline = Hunyuan3DPaintPipeline(conf)
# Generate texture
textured_mesh_path = local_tex_pipeline(
mesh_path=mesh_path,
image_path=image_path,
output_mesh_path=output_mesh_path,
save_glb=False
)
return textured_mesh_path
except Exception as e:
logger.error(f"Texture generation failed: {e}")
return None
@spaces.GPU(duration=60)
def shape_generation(
caption=None,
image=None,
mv_image_front=None,
mv_image_back=None,
mv_image_left=None,
mv_image_right=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
check_box_rembg=False,
num_chunks=200000,
randomize_seed: bool = False,
):
start_time_0 = time.time()
mesh, image, save_folder, stats, seed = _gen_shape(
caption,
image,
mv_image_front=mv_image_front,
mv_image_back=mv_image_back,
mv_image_left=mv_image_left,
mv_image_right=mv_image_right,
steps=steps,
guidance_scale=guidance_scale,
seed=seed,
octree_resolution=octree_resolution,
check_box_rembg=check_box_rembg,
num_chunks=num_chunks,
randomize_seed=randomize_seed,
)
stats['time']['total'] = time.time() - start_time_0
mesh.metadata['extras'] = stats
path = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH)
if args.low_vram_mode:
torch.cuda.empty_cache()
return (
gr.update(value=path),
model_viewer_html,
stats,
seed,
)
def build_app():
title = 'Hunyuan3D-2: High Resolution Textured 3D Assets Generation'
if MV_MODE:
title = 'Hunyuan3D-2mv: Image to 3D Generation with 1-4 Views'
if 'mini' in args.subfolder:
title = 'Hunyuan3D-2mini: Strong 0.6B Image to Shape Generator'
title = 'Hunyuan-3D-2.1'
if TURBO_MODE:
title = title.replace(':', '-Turbo: Fast ')
title_html = f"""
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px">
{title}
</div>
<div align="center">
Tencent Hunyuan3D Team
</div>
"""
custom_css = """
.app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) {
max-width: 1480px;
}
.mv-image button .wrap {
font-size: 10px;
}
.mv-image .icon-wrap {
width: 20px;
}
"""
with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.1', analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title_html)
with gr.Row():
with gr.Column(scale=3):
with gr.Tabs(selected='tab_img_prompt') as tabs_prompt:
with gr.Tab('Image Prompt', id='tab_img_prompt', visible=not MV_MODE) as tab_ip:
image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290)
caption = gr.State(None)
# with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I and not MV_MODE) as tab_tp:
# caption = gr.Textbox(label='Text Prompt',
# placeholder='HunyuanDiT will be used to generate image.',
# info='Example: A 3D model of a cute cat, white background')
with gr.Tab('MultiView Prompt', visible=MV_MODE) as tab_mv:
# gr.Label('Please upload at least one front image.')
with gr.Row():
mv_image_front = gr.Image(label='Front', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
mv_image_back = gr.Image(label='Back', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
with gr.Row():
mv_image_left = gr.Image(label='Left', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
mv_image_right = gr.Image(label='Right', type='pil', image_mode='RGBA', height=140,
min_width=100, elem_classes='mv-image')
with gr.Row():
btn = gr.Button(value='Gen Shape', variant='primary', min_width=100)
btn_all = gr.Button(value='Gen Textured Shape',
variant='primary',
visible=HAS_TEXTUREGEN,
min_width=100)
with gr.Group():
file_out = gr.File(label="File", visible=False)
file_out2 = gr.File(label="File", visible=False)
with gr.Tabs(selected='tab_options' if TURBO_MODE else 'tab_export'):
with gr.Tab("Options", id='tab_options', visible=TURBO_MODE):
gen_mode = gr.Radio(
label='Generation Mode',
info='Recommendation: Turbo for most cases, \
Fast for very complex cases, Standard seldom use.',
choices=['Turbo', 'Fast', 'Standard'],
value='Turbo')
decode_mode = gr.Radio(
label='Decoding Mode',
info='The resolution for exporting mesh from generated vectset',
choices=['Low', 'Standard', 'High'],
value='Standard')
with gr.Tab('Advanced Options', id='tab_advanced_options'):
with gr.Row():
check_box_rembg = gr.Checkbox(
value=True,
label='Remove Background',
min_width=100)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True,
min_width=100)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
with gr.Row():
num_steps = gr.Slider(maximum=100,
minimum=1,
value=5 if 'turbo' in args.subfolder else 30,
step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512,
minimum=16,
value=256,
label='Octree Resolution')
with gr.Row():
cfg_scale = gr.Number(value=5.0, label='Guidance Scale', min_width=100)
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000,
label='Number of Chunks', min_width=100)
with gr.Tab("Export", id='tab_export'):
with gr.Row():
file_type = gr.Dropdown(label='File Type',
choices=SUPPORTED_FORMATS,
value='glb', min_width=100)
reduce_face = gr.Checkbox(label='Simplify Mesh',
value=False, min_width=100)
export_texture = gr.Checkbox(label='Include Texture', value=False,
visible=False, min_width=100)
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000,
label='Target Face Number')
with gr.Row():
confirm_export = gr.Button(value="Transform", min_width=100)
file_export = gr.DownloadButton(label="Download", variant='primary',
interactive=False, min_width=100)
with gr.Column(scale=6):
with gr.Tabs(selected='gen_mesh_panel') as tabs_output:
with gr.Tab('Generated Mesh', id='gen_mesh_panel'):
html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Tab('Exporting Mesh', id='export_mesh_panel'):
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Tab('Mesh Statistic', id='stats_panel'):
stats = gr.Json({}, label='Mesh Stats')
with gr.Column(scale=3 if MV_MODE else 2):
with gr.Tabs(selected='tab_img_gallery') as gallery:
with gr.Tab('Image to 3D Gallery',
id='tab_img_gallery',
visible=not MV_MODE) as tab_gi:
with gr.Row():
gr.Examples(examples=example_is, inputs=[image],
label=None, examples_per_page=18)
tab_ip.select(fn=lambda: gr.update(selected='tab_img_gallery'), outputs=gallery)
#if HAS_T2I:
# tab_tp.select(fn=lambda: gr.update(selected='tab_txt_gallery'), outputs=gallery)
btn.click(
shape_generation,
inputs=[
caption,
image,
mv_image_front,
mv_image_back,
mv_image_left,
mv_image_right,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
num_chunks,
randomize_seed,
],
outputs=[file_out, html_gen_mesh, stats, seed]
).then(
lambda: (gr.update(visible=False, value=False), gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=False)),
outputs=[export_texture, reduce_face, confirm_export, file_export],
).then(
lambda: gr.update(selected='gen_mesh_panel'),
outputs=[tabs_output],
)
btn_all.click(
generation_all,
inputs=[
caption,
image,
mv_image_front,
mv_image_back,
mv_image_left,
mv_image_right,
num_steps,
cfg_scale,
seed,
octree_resolution,
check_box_rembg,
num_chunks,
randomize_seed,
],
outputs=[file_out, file_out2, html_gen_mesh, stats, seed]
).then(
lambda: (gr.update(visible=True, value=True), gr.update(interactive=False), gr.update(interactive=True),
gr.update(interactive=False)),
outputs=[export_texture, reduce_face, confirm_export, file_export],
).then(
lambda: gr.update(selected='gen_mesh_panel'),
outputs=[tabs_output],
)
def on_gen_mode_change(value):
if value == 'Turbo':
return gr.update(value=5)
elif value == 'Fast':
return gr.update(value=10)
else:
return gr.update(value=30)
gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps])
def on_decode_mode_change(value):
if value == 'Low':
return gr.update(value=196)
elif value == 'Standard':
return gr.update(value=256)
else:
return gr.update(value=384)
decode_mode.change(on_decode_mode_change, inputs=[decode_mode],
outputs=[octree_resolution])
def on_export_click(file_out, file_out2, file_type,
reduce_face, export_texture, target_face_num):
if file_out is None:
raise gr.Error('Please generate a mesh first.')
print(f'exporting {file_out}')
print(f'reduce face to {target_face_num}')
if export_texture:
mesh = trimesh.load(file_out2)
save_folder = gen_save_folder()
path = export_mesh(mesh, save_folder, textured=True, type=file_type)
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=True)
model_viewer_html = build_model_viewer_html(save_folder,
height=HTML_HEIGHT,
width=HTML_WIDTH,
textured=True)
else:
mesh = trimesh.load(file_out)
mesh = floater_remove_worker(mesh)
mesh = degenerate_face_remove_worker(mesh)
if reduce_face:
mesh = face_reduce_worker(mesh, target_face_num)
save_folder = gen_save_folder()
path = export_mesh(mesh, save_folder, textured=False, type=file_type)
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder,
height=HTML_HEIGHT,
width=HTML_WIDTH,
textured=False)
print(f'export to {path}')
return model_viewer_html, gr.update(value=path, interactive=True)
confirm_export.click(
lambda: gr.update(selected='export_mesh_panel'),
outputs=[tabs_output],
).then(
on_export_click,
inputs=[file_out, file_out2, file_type, reduce_face, export_texture, target_face_num],
outputs=[html_export_mesh, file_export]
)
return demo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2.1')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-1')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2.1')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache-path', type=str, default='/root/save_dir')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = False
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
MV_MODE = 'mv' in args.model_path
TURBO_MODE = 'turbo' in args.subfolder
HTML_HEIGHT = 690 if MV_MODE else 650
HTML_WIDTH = 500
HTML_OUTPUT_PLACEHOLDER = f"""
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
<div style='text-align: center; font-size: 16px; color: #6b7280;'>
<p style="color: #8d8d8d;">Welcome to Hunyuan3D!</p>
<p style="color: #8d8d8d;">No mesh here.</p>
</div>
</div>
"""
INPUT_MESH_HTML = """
<div style='height: 490px; width: 100%; border-radius: 8px;
border-color: #e5e7eb; order-style: solid; border-width: 1px;'>
</div>
"""
example_is = get_example_img_list()
example_ts = get_example_txt_list()
SUPPORTED_FORMATS = ['glb', 'obj', 'ply', 'stl']
HAS_TEXTUREGEN = False
if not args.disable_tex:
try:
# Apply torchvision fix before importing basicsr/RealESRGAN
print("Applying torchvision compatibility fix for texture generation...")
try:
from torchvision_fix import apply_fix
fix_result = apply_fix()
if not fix_result:
print("Warning: Torchvision fix may not have been applied successfully")
except Exception as fix_error:
print(f"Warning: Failed to apply torchvision fix: {fix_error}")
# from hy3dgen.texgen import Hunyuan3DPaintPipeline
# texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path)
# if args.low_vram_mode:
# texgen_worker.enable_model_cpu_offload()
from hy3dpaint.textureGenPipeline import Hunyuan3DPaintPipeline, Hunyuan3DPaintConfig
conf = Hunyuan3DPaintConfig(max_num_view=8, resolution=768)
conf.realesrgan_ckpt_path = "hy3dpaint/ckpt/RealESRGAN_x4plus.pth"
conf.multiview_cfg_path = "hy3dpaint/cfgs/hunyuan-paint-pbr.yaml"
conf.custom_pipeline = "hy3dpaint/hunyuanpaintpbr"
tex_pipeline = Hunyuan3DPaintPipeline(conf)
# Not help much, ignore for now.
# if args.compile:
# texgen_worker.models['delight_model'].pipeline.unet.compile()
# texgen_worker.models['delight_model'].pipeline.vae.compile()
# texgen_worker.models['multiview_model'].pipeline.unet.compile()
# texgen_worker.models['multiview_model'].pipeline.vae.compile()
HAS_TEXTUREGEN = True
except Exception as e:
print(f"Error loading texture generator: {e}")
print("Failed to load texture generator.")
print('Please try to install requirements by following README.md')
HAS_TEXTUREGEN = False
# HAS_T2I = True
# if args.enable_t23d:
# from hy3dgen.text2image import HunyuanDiTPipeline
# t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled')
# HAS_T2I = True
from hy3dshape import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dshape.pipelines import export_to_trimesh
from hy3dshape.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=False,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
floater_remove_worker = FloaterRemover()
degenerate_face_remove_worker = DegenerateFaceRemover()
face_reduce_worker = FaceReducer()
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2
# create a FastAPI app
app = FastAPI()
# API Endpoints
@app.post("/api/generate")
async def generate_3d_model(request: GenerateRequest, background_tasks: BackgroundTasks):
"""Generate 3D model from images."""
try:
# Validate input
if not request.images:
raise HTTPException(status_code=400, detail="At least one image is required")
if 'front' not in request.images:
raise HTTPException(status_code=400, detail="Front image is required")
# Create job
job_id = create_job()
# Store job data
jobs[job_id].images = request.images
jobs[job_id].options = request.options
# Start background task
background_tasks.add_task(
process_generation_job,
job_id,
request.images,
request.options
)
return JSONResponse({
"job_id": job_id,
"status": "queued"
})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/status")
async def get_job_status(job_id: str):
"""Get job status and results."""
if job_id not in jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = jobs[job_id]
response = {
"status": job.status.value,
"progress": job.progress
}
if job.status == JobStatus.COMPLETED:
response["model_urls"] = job.model_urls
elif job.status == JobStatus.FAILED:
response["error"] = job.error_message
return JSONResponse(response)
@app.get("/api/health")
async def health_check():
"""Health check endpoint."""
return JSONResponse({
"status": "ok",
"version": "2.1"
})
# create a static directory to store the static files
static_dir = Path(SAVE_DIR).absolute()
static_dir.mkdir(parents=True, exist_ok=True)
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static")
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
demo = build_app()
app = gr.mount_gradio_app(app, demo, path="/")
if ENV == 'Huggingface':
# for Zerogpu
from spaces import zero
zero.startup()
uvicorn.run(app, host=args.host, port=args.port)