File size: 14,908 Bytes
e02fdd9
1eab7aa
 
 
 
74952b9
1eab7aa
74952b9
e02fdd9
 
 
d075410
1eab7aa
e02fdd9
1eab7aa
 
 
e02fdd9
1eab7aa
 
e02fdd9
1eab7aa
 
 
 
 
 
 
 
 
 
 
e02fdd9
1eab7aa
 
e02fdd9
 
 
 
 
 
1eab7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e02fdd9
 
 
1eab7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
74952b9
1eab7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e02fdd9
1eab7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e02fdd9
1eab7aa
 
 
 
 
 
 
 
 
 
 
 
 
74952b9
1eab7aa
 
 
 
 
 
 
 
 
 
e02fdd9
 
 
 
 
 
 
 
 
 
 
 
 
 
d075410
e02fdd9
 
d075410
 
 
 
 
 
e02fdd9
d075410
 
 
e02fdd9
d075410
 
 
 
 
 
 
e02fdd9
 
 
 
 
 
 
 
 
 
 
 
 
1eab7aa
e02fdd9
74952b9
1eab7aa
 
 
74952b9
e02fdd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eab7aa
 
74952b9
1eab7aa
 
e02fdd9
1eab7aa
74952b9
1eab7aa
74952b9
1eab7aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74952b9
1eab7aa
 
e02fdd9
1eab7aa
74952b9
1eab7aa
 
74952b9
1eab7aa
 
74952b9
1eab7aa
74952b9
1eab7aa
 
 
 
74952b9
e02fdd9
1eab7aa
 
 
 
 
 
 
 
 
 
 
 
 
74952b9
1eab7aa
74952b9
1eab7aa
 
 
74952b9
1eab7aa
74952b9
 
1eab7aa
e02fdd9
 
1eab7aa
e02fdd9
1eab7aa
e02fdd9
1eab7aa
 
e02fdd9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# app.py - HF Spaces compatible version (Fixed webhook handling)
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any

import gradio as gr
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import asyncio

# Configuration - Use HF Spaces secrets
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET")
HF_TOKEN = os.getenv("HF_TOKEN")

# Simple storage for processed tag operations
tag_operations_store: List[Dict[str, Any]] = []

# Common ML tags that we recognize for auto-tagging
RECOGNIZED_TAGS = {
    "pytorch", "tensorflow", "jax", "transformers", "diffusers",
    "text-generation", "text-classification", "question-answering",
    "text-to-image", "image-classification", "object-detection",
    "fill-mask", "token-classification", "translation", "summarization",
    "feature-extraction", "sentence-similarity", "zero-shot-classification",
    "image-to-text", "automatic-speech-recognition", "audio-classification",
    "voice-activity-detection", "depth-estimation", "image-segmentation",
    "video-classification", "reinforcement-learning", "tabular-classification",
    "tabular-regression", "time-series-forecasting", "graph-ml", "robotics",
    "computer-vision", "nlp", "cv", "multimodal", "gguf", "safetensors",
    "llamacpp", "onnx", "mlx"
}

class WebhookEvent(BaseModel):
    event: Dict[str, str]
    comment: Dict[str, Any]
    discussion: Dict[str, Any]
    repo: Dict[str, str]

def extract_tags_from_text(text: str) -> List[str]:
    """Extract potential tags from discussion text"""
    text_lower = text.lower()
    explicit_tags = []

    # Pattern 1: "tag: something" or "tags: something"
    tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
    matches = re.findall(tag_pattern, text_lower)
    for match in matches:
        tags = [tag.strip() for tag in match.split(",")]
        explicit_tags.extend(tags)

    # Pattern 2: "#hashtag" style
    hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
    hashtag_matches = re.findall(hashtag_pattern, text_lower)
    explicit_tags.extend(hashtag_matches)

    # Pattern 3: Look for recognized tags mentioned in natural text
    mentioned_tags = []
    for tag in RECOGNIZED_TAGS:
        if tag in text_lower:
            mentioned_tags.append(tag)

    # Combine and deduplicate
    all_tags = list(set(explicit_tags + mentioned_tags))

    # Filter to only include recognized tags or explicitly mentioned ones
    valid_tags = []
    for tag in all_tags:
        if tag in RECOGNIZED_TAGS or tag in explicit_tags:
            valid_tags.append(tag)

    return valid_tags

async def process_tags_directly(all_tags: List[str], repo_name: str) -> List[str]:
    """Process tags using direct HuggingFace Hub API calls"""
    print("πŸ”§ Using direct HuggingFace Hub API approach...")
    result_messages = []
    
    if not HF_TOKEN:
        error_msg = "No HF_TOKEN configured"
        print(f"❌ {error_msg}")
        return [error_msg]
    
    try:
        from huggingface_hub import HfApi, model_info, dataset_info, space_info, ModelCard, ModelCardData
        from huggingface_hub.utils import HfHubHTTPError
        from huggingface_hub import CommitOperationAdd
        
        hf_api = HfApi(token=HF_TOKEN)
        
        # Determine repository type
        repo_type = None
        repo_info = None
        
        for repo_type_to_try in ["model", "dataset", "space"]:
            try:
                print(f"πŸ” Trying to access {repo_name} as {repo_type_to_try}...")
                if repo_type_to_try == "model":
                    repo_info = model_info(repo_id=repo_name, token=HF_TOKEN)
                elif repo_type_to_try == "dataset":
                    repo_info = dataset_info(repo_id=repo_name, token=HF_TOKEN)
                elif repo_type_to_try == "space":
                    repo_info = space_info(repo_id=repo_name, token=HF_TOKEN)
                
                repo_type = repo_type_to_try
                print(f"βœ… Found repository as {repo_type}")
                break
                
            except HfHubHTTPError as e:
                if "404" in str(e):
                    continue
                else:
                    print(f"❌ Error accessing as {repo_type_to_try}: {e}")
                    continue
            except Exception as e:
                print(f"❌ Unexpected error for {repo_type_to_try}: {e}")
                continue
        
        if not repo_type or not repo_info:
            error_msg = f"Repository '{repo_name}' not found"
            return [f"Error: {error_msg}"]
        
        current_tags = repo_info.tags if repo_info.tags else []
        print(f"🏷️ Current tags: {current_tags}")
        
        # Process each tag
        for tag in all_tags:
            try:
                if tag in current_tags:
                    msg = f"Tag '{tag}': Already exists"
                    result_messages.append(msg)
                    continue
                
                # Add the new tag
                updated_tags = current_tags + [tag]
                
                # Create/update model card
                try:
                    card = ModelCard.load(repo_name, token=HF_TOKEN, repo_type=repo_type)
                    if not hasattr(card, "data") or card.data is None:
                        card.data = ModelCardData()
                except HfHubHTTPError:
                    card = ModelCard("")
                    card.data = ModelCardData()
                
                # Update tags
                card_dict = card.data.to_dict()
                card_dict["tags"] = updated_tags
                card.data = ModelCardData(**card_dict)
                
                pr_title = f"Add '{tag}' tag"
                pr_description = f"""
## Add tag: {tag}

This PR adds the `{tag}` tag to the {repo_type} repository.

**Changes:**
- Added `{tag}` to {repo_type} tags
- Updated from {len(current_tags)} to {len(updated_tags)} tags

**Current tags:** {", ".join(current_tags) if current_tags else "None"}
**New tags:** {", ".join(updated_tags)}

*This PR was created automatically by the HF Tagging Bot.*
"""
                
                commit_info = hf_api.create_commit(
                    repo_id=repo_name,
                    repo_type=repo_type,
                    operations=[
                        CommitOperationAdd(
                            path_in_repo="README.md", 
                            path_or_fileobj=str(card).encode("utf-8")
                        )
                    ],
                    commit_message=pr_title,
                    commit_description=pr_description,
                    token=HF_TOKEN,
                    create_pr=True,
                )
                
                pr_url = getattr(commit_info, 'pr_url', str(commit_info))
                msg = f"Tag '{tag}': [PR created]({pr_url})"
                result_messages.append(msg)
                
            except Exception as tag_error:
                error_msg = f"Tag '{tag}': Error - {str(tag_error)}"
                result_messages.append(error_msg)
        
        return result_messages
        
    except Exception as e:
        error_msg = f"Processing failed: {str(e)}"
        return [error_msg]

async def process_webhook_comment(webhook_data: Dict[str, Any]):
    """Process webhook to detect and add tags"""
    try:
        comment_content = webhook_data["comment"]["content"]
        discussion_title = webhook_data["discussion"]["title"]
        repo_name = webhook_data["repo"]["name"]
        discussion_num = webhook_data["discussion"]["num"]
        comment_author = webhook_data["comment"]["author"].get("id", "unknown")

        print(f"πŸ“ Processing comment from {comment_author} on {repo_name}")
        print(f"πŸ“ Comment: {comment_content}")

        # Extract tags
        comment_tags = extract_tags_from_text(comment_content)
        title_tags = extract_tags_from_text(discussion_title)
        all_tags = list(set(comment_tags + title_tags))

        if not all_tags:
            return "No recognizable tags found"

        print(f"🏷️ Found tags: {all_tags}")
        result_messages = await process_tags_directly(all_tags, repo_name)

        # Store interaction
        interaction = {
            "timestamp": datetime.now().isoformat(),
            "repo": repo_name,
            "discussion_title": discussion_title,
            "discussion_num": discussion_num,
            "comment_author": comment_author,
            "detected_tags": all_tags,
            "results": result_messages,
        }
        tag_operations_store.append(interaction)

        # Keep only last 100 operations
        if len(tag_operations_store) > 100:
            tag_operations_store.pop(0)

        return " | ".join(result_messages)

    except Exception as e:
        error_msg = f"Error processing webhook: {str(e)}"
        print(f"❌ {error_msg}")
        return error_msg

# Create FastAPI app for webhook handling
app = FastAPI(title="HF Tagging Bot API")
app.add_middleware(CORSMiddleware, allow_origins=["*"])

@app.post("/webhook")
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
    """Handle HF Hub webhooks"""
    # Verify webhook secret if configured
    if WEBHOOK_SECRET:
        webhook_secret = request.headers.get("X-Webhook-Secret")
        if webhook_secret != WEBHOOK_SECRET:
            print("❌ Invalid webhook secret")
            return {"error": "Invalid webhook secret"}

    try:
        payload = await request.json()
        print(f"πŸ“₯ Received webhook: {payload.get('event', {})}")

        event = payload.get("event", {})
        scope = event.get("scope")
        action = event.get("action")

        # Only process discussion comment creation (not PRs)
        if (scope == "discussion" and 
            action == "create" and 
            not payload.get("discussion", {}).get("isPullRequest", False)):
            
            background_tasks.add_task(process_webhook_comment, payload)
            return {"status": "processing"}

        return {"status": "ignored"}
    except Exception as e:
        print(f"❌ Webhook error: {e}")
        return {"error": str(e)}

@app.get("/health")
async def health_check():
    return {
        "status": "healthy",
        "hf_token_configured": bool(HF_TOKEN),
        "webhook_secret_configured": bool(WEBHOOK_SECRET),
        "operations_processed": len(tag_operations_store)
    }

@app.get("/")
async def root():
    return {"message": "HF Tagging Bot is running! Visit /gradio for the interface."}

def create_gradio_interface():
    """Create Gradio interface for monitoring"""
    with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as interface:
        gr.Markdown("# 🏷️ HuggingFace Tagging Bot")
        gr.Markdown("*Automatically adds tags to repositories when mentioned in discussions*")
        
        with gr.Tab("🏠 Status"):
            gr.Markdown(f"""
## Bot Configuration
- πŸ”‘ **HF Token**: {'βœ… Configured' if HF_TOKEN else '❌ Missing'}
- πŸ” **Webhook Secret**: {'βœ… Configured' if WEBHOOK_SECRET else '❌ Missing'}
- πŸ“Š **Operations Processed**: {len(tag_operations_store)}

## Setup Instructions
1. **Add webhook to your repository**:
   - Go to repository Settings β†’ Webhooks
   - Add webhook URL: `https://your-space-name.hf.space/webhook`
   - Select "Discussion comments" events
   - Add your webhook secret (optional)

2. **In discussions, mention tags**:
   - "Please add tags: pytorch, transformers"
   - "This needs #pytorch and #text-generation"
   - "tag: computer-vision"

## Webhook Endpoint
`POST https://your-space-name.hf.space/webhook`

## Health Check
Visit: `https://your-space-name.hf.space/health`
            """)
            
        with gr.Tab("πŸ“ Operations Log"):
            def get_recent_operations():
                if not tag_operations_store:
                    return "No operations yet. Configure webhooks and post comments with tags to see activity here."
                
                recent = tag_operations_store[-10:]
                output = []
                for op in reversed(recent):
                    output.append(f"""
**{op['repo']}** - {op['timestamp'][:19]}
- πŸ‘€ Author: {op['comment_author']}
- 🏷️ Tags: {', '.join(op['detected_tags']) if op['detected_tags'] else 'None'}
- πŸ“‹ Results: {' | '.join(op['results'][:2])}{'...' if len(op['results']) > 2 else ''}
---""")
                return "\n".join(output)
            
            operations_display = gr.Textbox(
                label="Recent Operations",
                value=get_recent_operations(),
                lines=15,
                interactive=False
            )
            
            refresh_btn = gr.Button("πŸ”„ Refresh Log")
            refresh_btn.click(fn=get_recent_operations, outputs=operations_display)
            
        with gr.Tab("🏷️ Tags & Testing"):
            gr.Markdown(f"""
## Supported Tags ({len(RECOGNIZED_TAGS)} total)
{', '.join(sorted(RECOGNIZED_TAGS))}

## Tag Detection Examples
- **Explicit**: `tag: pytorch` or `tags: pytorch, transformers`
- **Hashtag**: `#pytorch #transformers`
- **Natural**: "This model uses pytorch and transformers"
            """)
            
            gr.Markdown("### Test Tag Detection")
            test_input = gr.Textbox(
                label="Test Comment",
                placeholder="Enter a comment to test tag detection...",
                lines=3,
                value="This model should have tags: pytorch, text-generation"
            )
            test_output = gr.Textbox(
                label="Detected Tags",
                lines=2,
                interactive=False
            )
            test_btn = gr.Button("πŸ” Test Detection")
            
            def test_tag_detection(text):
                if not text:
                    return "Enter some text to test"
                tags = extract_tags_from_text(text)
                if tags:
                    return f"Found {len(tags)} tags: {', '.join(tags)}"
                else:
                    return "No tags detected in this text"
            
            test_btn.click(fn=test_tag_detection, inputs=test_input, outputs=test_output)

    return interface

# Create the Gradio interface
demo = create_gradio_interface()

# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")

# This is what HF Spaces will use
if __name__ == "__main__":
    print("πŸš€ HF Tagging Bot - Starting with FastAPI + Gradio")
    print(f"πŸ”‘ HF_TOKEN: {'βœ… Configured' if HF_TOKEN else '❌ Missing'}")
    print(f"πŸ” Webhook Secret: {'βœ… Configured' if WEBHOOK_SECRET else '❌ Missing'}")
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)