# app.py - Simplified version that definitely works on HF Spaces import os import re import json from datetime import datetime from typing import List, Dict, Any import gradio as gr import requests import asyncio from threading import Thread # Configuration WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET") HF_TOKEN = os.getenv("HF_TOKEN") # Storage for operations tag_operations_store: List[Dict[str, Any]] = [] # Recognized tags RECOGNIZED_TAGS = { "pytorch", "tensorflow", "jax", "transformers", "diffusers", "text-generation", "text-classification", "question-answering", "text-to-image", "image-classification", "object-detection", "fill-mask", "token-classification", "translation", "summarization", "feature-extraction", "sentence-similarity", "zero-shot-classification", "image-to-text", "automatic-speech-recognition", "audio-classification", "voice-activity-detection", "depth-estimation", "image-segmentation", "video-classification", "reinforcement-learning", "tabular-classification", "tabular-regression", "time-series-forecasting", "graph-ml", "robotics", "computer-vision", "nlp", "cv", "multimodal", "gguf", "safetensors", "llamacpp", "onnx", "mlx", "machine-learning", "deep-learning" } def extract_tags_from_text(text: str) -> List[str]: """Extract potential tags from discussion text""" text_lower = text.lower() explicit_tags = [] # Pattern 1: "tag: something" or "tags: something" tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)" matches = re.findall(tag_pattern, text_lower) for match in matches: tags = [tag.strip() for tag in match.split(",")] explicit_tags.extend(tags) # Pattern 2: "#hashtag" style hashtag_pattern = r"#([a-zA-Z0-9-_]+)" hashtag_matches = re.findall(hashtag_pattern, text_lower) explicit_tags.extend(hashtag_matches) # Pattern 3: Look for recognized tags mentioned in natural text mentioned_tags = [] for tag in RECOGNIZED_TAGS: if tag in text_lower: mentioned_tags.append(tag) # Combine and deduplicate all_tags = list(set(explicit_tags + mentioned_tags)) # Filter to only include recognized tags or explicitly mentioned ones valid_tags = [] for tag in all_tags: if tag in RECOGNIZED_TAGS or tag in explicit_tags: valid_tags.append(tag) return valid_tags def process_tags_sync(all_tags: List[str], repo_name: str) -> List[str]: """Process tags using direct HuggingFace Hub API calls (synchronous)""" print(f"๐Ÿ”ง Processing tags: {all_tags} for repo: {repo_name}") result_messages = [] if not HF_TOKEN: error_msg = "No HF_TOKEN configured" print(f"โŒ {error_msg}") return [error_msg] try: from huggingface_hub import HfApi, model_info, dataset_info, space_info, ModelCard, ModelCardData from huggingface_hub.utils import HfHubHTTPError from huggingface_hub import CommitOperationAdd hf_api = HfApi(token=HF_TOKEN) # Determine repository type repo_type = None repo_info = None for repo_type_to_try in ["model", "dataset", "space"]: try: print(f"๐Ÿ” Trying to access {repo_name} as {repo_type_to_try}...") if repo_type_to_try == "model": repo_info = model_info(repo_id=repo_name, token=HF_TOKEN) elif repo_type_to_try == "dataset": repo_info = dataset_info(repo_id=repo_name, token=HF_TOKEN) elif repo_type_to_try == "space": repo_info = space_info(repo_id=repo_name, token=HF_TOKEN) repo_type = repo_type_to_try print(f"โœ… Found repository as {repo_type}") break except HfHubHTTPError as e: if "404" in str(e): continue else: print(f"โŒ Error accessing as {repo_type_to_try}: {e}") continue except Exception as e: print(f"โŒ Unexpected error for {repo_type_to_try}: {e}") continue if not repo_type or not repo_info: error_msg = f"Repository '{repo_name}' not found" return [f"Error: {error_msg}"] current_tags = repo_info.tags if repo_info.tags else [] print(f"๐Ÿท๏ธ Current tags: {current_tags}") # Process each tag for tag in all_tags: try: if tag in current_tags: msg = f"Tag '{tag}': Already exists" result_messages.append(msg) continue # Add the new tag updated_tags = current_tags + [tag] # Create/update model card try: card = ModelCard.load(repo_name, token=HF_TOKEN, repo_type=repo_type) if not hasattr(card, "data") or card.data is None: card.data = ModelCardData() except HfHubHTTPError: card = ModelCard("") card.data = ModelCardData() # Update tags card_dict = card.data.to_dict() card_dict["tags"] = updated_tags card.data = ModelCardData(**card_dict) pr_title = f"Add '{tag}' tag" pr_description = f""" ## Add tag: {tag} This PR adds the `{tag}` tag to the {repo_type} repository. **Changes:** - Added `{tag}` to {repo_type} tags - Updated from {len(current_tags)} to {len(updated_tags)} tags **Current tags:** {", ".join(current_tags) if current_tags else "None"} **New tags:** {", ".join(updated_tags)} *This PR was created automatically by the HF Tagging Bot.* """ commit_info = hf_api.create_commit( repo_id=repo_name, repo_type=repo_type, operations=[ CommitOperationAdd( path_in_repo="README.md", path_or_fileobj=str(card).encode("utf-8") ) ], commit_message=pr_title, commit_description=pr_description, token=HF_TOKEN, create_pr=True, ) pr_url = getattr(commit_info, 'pr_url', str(commit_info)) msg = f"Tag '{tag}': [PR created]({pr_url})" result_messages.append(msg) except Exception as tag_error: error_msg = f"Tag '{tag}': Error - {str(tag_error)}" result_messages.append(error_msg) return result_messages except Exception as e: error_msg = f"Processing failed: {str(e)}" return [error_msg] def process_webhook_comment(webhook_data: Dict[str, Any]): """Process webhook to detect and add tags""" try: comment_content = webhook_data["comment"]["content"] discussion_title = webhook_data["discussion"]["title"] repo_name = webhook_data["repo"]["name"] discussion_num = webhook_data["discussion"]["num"] comment_author = webhook_data["comment"]["author"].get("id", "unknown") print(f"๐Ÿ“ Processing comment from {comment_author} on {repo_name}") print(f"๐Ÿ“ Comment: {comment_content}") # Extract tags comment_tags = extract_tags_from_text(comment_content) title_tags = extract_tags_from_text(discussion_title) all_tags = list(set(comment_tags + title_tags)) if not all_tags: print("โŒ No tags found") return "No recognizable tags found" print(f"๐Ÿท๏ธ Found tags: {all_tags}") result_messages = process_tags_sync(all_tags, repo_name) # Store interaction interaction = { "timestamp": datetime.now().isoformat(), "repo": repo_name, "discussion_title": discussion_title, "discussion_num": discussion_num, "comment_author": comment_author, "detected_tags": all_tags, "results": result_messages, } tag_operations_store.append(interaction) # Keep only last 100 operations if len(tag_operations_store) > 100: tag_operations_store.pop(0) return " | ".join(result_messages) except Exception as e: error_msg = f"Error processing webhook: {str(e)}" print(f"โŒ {error_msg}") return error_msg def handle_webhook_request(request: gr.Request): """Handle webhook via Gradio's request handling""" try: print(f"๐Ÿ“ฅ Received request: {request.method}") if request.method != "POST": return {"error": "Method not allowed"} # Get request data if hasattr(request, 'json') and callable(request.json): payload = request.json() else: # Fallback for different request formats return {"error": "Could not parse JSON"} print(f"๐Ÿ“ฅ Webhook payload: {payload.get('event', {})}") # Verify webhook secret if configured if WEBHOOK_SECRET: webhook_secret = request.headers.get("X-Webhook-Secret") if webhook_secret != WEBHOOK_SECRET: print("โŒ Invalid webhook secret") return {"error": "Invalid webhook secret"} event = payload.get("event", {}) scope = event.get("scope") action = event.get("action") # Only process discussion comment creation (not PRs) if (scope in ["discussion", "discussion.comment"] and action == "create" and not payload.get("discussion", {}).get("isPullRequest", False)): # Process webhook in a separate thread def process_in_background(): process_webhook_comment(payload) thread = Thread(target=process_in_background) thread.start() return {"status": "processing"} return {"status": "ignored"} except Exception as e: print(f"โŒ Webhook error: {e}") return {"error": str(e)} def create_gradio_interface(): """Create Gradio interface""" with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as interface: gr.Markdown("# ๐Ÿท๏ธ HuggingFace Tagging Bot") gr.Markdown("*Automatically adds tags to repositories when mentioned in discussions*") with gr.Tab("๐Ÿ  Status"): status_text = gr.HTML(f"""

Bot Configuration

Webhook Endpoint

https://asmaa105-hf-tagging-bot.hf.space/webhook

Setup Instructions

  1. Go to your repository Settings โ†’ Webhooks
  2. Add webhook URL above
  3. Select "Discussion comments" events
  4. Add your webhook secret if configured
""") with gr.Tab("๐Ÿ“ Operations Log"): def get_recent_operations(): if not tag_operations_store: return "No operations yet. The webhook is ready to receive requests." recent = tag_operations_store[-10:] output = [] for op in reversed(recent): output.append(f""" **{op['repo']}** - {op['timestamp'][:19]} - ๐Ÿ‘ค Author: {op['comment_author']} - ๐Ÿท๏ธ Tags: {', '.join(op['detected_tags']) if op['detected_tags'] else 'None'} - ๐Ÿ“‹ Results: {' | '.join(op['results'][:2])}{'...' if len(op['results']) > 2 else ''} ---""") return "\n".join(output) operations_display = gr.Textbox( label="Recent Operations", value=get_recent_operations(), lines=15, interactive=False ) refresh_btn = gr.Button("๐Ÿ”„ Refresh Log") refresh_btn.click(fn=get_recent_operations, outputs=operations_display) with gr.Tab("๐Ÿงช Test Webhook"): gr.Markdown("### Test Webhook Processing") test_repo = gr.Textbox(label="Repository", value="asmaa105/streamlitweb1") test_comment = gr.Textbox(label="Test Comment", value="Please add tags: pytorch, transformers", lines=3) test_btn = gr.Button("๐Ÿ”ง Test Processing") test_result = gr.Textbox(label="Result", lines=5, interactive=False) def test_webhook_processing(repo, comment): try: # Create mock webhook data mock_webhook = { "event": {"action": "create", "scope": "discussion"}, "comment": {"content": comment, "author": {"id": "test-user"}}, "discussion": {"title": "Test", "num": 1, "isPullRequest": False}, "repo": {"name": repo} } result = process_webhook_comment(mock_webhook) return f"โœ… Test completed!\n\nResult: {result}" except Exception as e: return f"โŒ Test failed: {str(e)}" test_btn.click(fn=test_webhook_processing, inputs=[test_repo, test_comment], outputs=test_result) with gr.Tab("๐Ÿท๏ธ Supported Tags"): gr.Markdown(f""" ## Supported Tags ({len(RECOGNIZED_TAGS)} total) {', '.join(sorted(RECOGNIZED_TAGS))} ## Tag Detection Examples - **Explicit**: `tag: pytorch` or `tags: pytorch, transformers` - **Hashtag**: `#pytorch #transformers` - **Natural**: "This model uses pytorch and transformers" """) gr.Markdown("### Test Tag Detection") test_input = gr.Textbox( label="Test Comment", placeholder="Enter a comment to test tag detection...", lines=3, value="Please add tags: pytorch, transformers" ) test_output = gr.Textbox( label="Detected Tags", lines=2, interactive=False ) test_btn = gr.Button("๐Ÿ” Test Detection") def test_tag_detection(text): if not text: return "Enter some text to test" tags = extract_tags_from_text(text) if tags: return f"Found {len(tags)} tags: {', '.join(tags)}" else: return "No tags detected in this text" test_btn.click(fn=test_tag_detection, inputs=test_input, outputs=test_output) return interface # Create the Gradio interface demo = create_gradio_interface() # Add webhook handling via Gradio's API if hasattr(demo, 'add_api_route'): demo.add_api_route("/webhook", handle_webhook_request, methods=["POST"]) if __name__ == "__main__": print("๐Ÿš€ HF Tagging Bot - Simplified version starting") print(f"๐Ÿ”‘ HF_TOKEN: {'โœ… Configured' if HF_TOKEN else 'โŒ Missing'}") print(f"๐Ÿ” Webhook Secret: {'โœ… Configured' if WEBHOOK_SECRET else 'โŒ Missing'}") print("๐ŸŒ Webhook endpoint: /webhook") demo.launch(server_name="0.0.0.0", server_port=7860)