File size: 17,139 Bytes
2d073e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Literal

from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import uvicorn
from pydantic import BaseModel
from dotenv import load_dotenv

load_dotenv()

# Configuration
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "716f77a91d0415cd0e3ed9dc8d188fc9ee53b11a8661e161a86f669f598a8016")
HF_TOKEN = os.getenv("HF_TOKEN")

# Simple storage for processed tag operations
tag_operations_store: List[Dict[str, Any]] = []

# Common ML tags that we recognize for auto-tagging
RECOGNIZED_TAGS = {
    "pytorch",
    "tensorflow",
    "jax",
    "transformers",
    "diffusers",
    "text-generation",
    "text-classification",
    "question-answering",
    "text-to-image",
    "image-classification",
    "object-detection",
    "fill-mask",
    "token-classification",
    "translation",
    "summarization",
    "feature-extraction",
    "sentence-similarity",
    "zero-shot-classification",
    "image-to-text",
    "automatic-speech-recognition",
    "audio-classification",
    "voice-activity-detection",
    "depth-estimation",
    "image-segmentation",
    "video-classification",
    "reinforcement-learning",
    "tabular-classification",
    "tabular-regression",
    "time-series-forecasting",
    "graph-ml",
    "robotics",
    "computer-vision",
    "nlp",
    "cv",
    "multimodal",
}


class WebhookEvent(BaseModel):
    event: Dict[str, str]
    comment: Dict[str, Any]
    discussion: Dict[str, Any]
    repo: Dict[str, str]


app = FastAPI(title="HF Tagging Bot")
app.add_middleware(CORSMiddleware, allow_origins=["*"])


def extract_tags_from_text(text: str) -> List[str]:
    """Extract potential tags from discussion text"""
    text_lower = text.lower()

    # Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
    explicit_tags = []

    # Pattern 1: "tag: something" or "tags: something"
    tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
    matches = re.findall(tag_pattern, text_lower)
    for match in matches:
        # Split by comma and clean up
        tags = [tag.strip() for tag in match.split(",")]
        explicit_tags.extend(tags)

    # Pattern 2: "#hashtag" style
    hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
    hashtag_matches = re.findall(hashtag_pattern, text_lower)
    explicit_tags.extend(hashtag_matches)

    # Pattern 3: Look for recognized tags mentioned in natural text
    mentioned_tags = []
    for tag in RECOGNIZED_TAGS:
        if tag in text_lower:
            mentioned_tags.append(tag)

    # Combine and deduplicate
    all_tags = list(set(explicit_tags + mentioned_tags))

    # Filter to only include recognized tags or explicitly mentioned ones
    valid_tags = []
    for tag in all_tags:
        if tag in RECOGNIZED_TAGS or tag in explicit_tags:
            valid_tags.append(tag)

    return valid_tags


async def process_tags_directly(all_tags: List[str], repo_name: str) -> List[str]:
    """Process tags using direct HuggingFace Hub API calls"""
    print("πŸ”§ Using direct HuggingFace Hub API approach...")
    result_messages = []
    
    if not HF_TOKEN:
        error_msg = "No HF_TOKEN configured"
        print(f"❌ {error_msg}")
        return [error_msg]
    
    try:
        from huggingface_hub import HfApi, model_info, dataset_info, space_info, ModelCard, ModelCardData
        from huggingface_hub.utils import HfHubHTTPError
        from huggingface_hub import CommitOperationAdd
        
        hf_api = HfApi(token=HF_TOKEN)
        
        # First, let's determine what type of repository this is
        repo_type = None
        repo_info = None
        
        # Try different repository types
        for repo_type_to_try in ["model", "dataset", "space"]:
            try:
                print(f"πŸ” Trying to access {repo_name} as {repo_type_to_try}...")
                if repo_type_to_try == "model":
                    repo_info = model_info(repo_id=repo_name, token=HF_TOKEN)
                elif repo_type_to_try == "dataset":
                    repo_info = dataset_info(repo_id=repo_name, token=HF_TOKEN)
                elif repo_type_to_try == "space":
                    repo_info = space_info(repo_id=repo_name, token=HF_TOKEN)
                
                repo_type = repo_type_to_try
                print(f"βœ… Found repository as {repo_type}")
                break
                
            except HfHubHTTPError as e:
                if "404" in str(e):
                    print(f"⚠️ Repository not found as {repo_type_to_try}")
                    continue
                else:
                    print(f"❌ Error accessing as {repo_type_to_try}: {e}")
                    continue
            except Exception as e:
                print(f"❌ Unexpected error for {repo_type_to_try}: {e}")
                continue
        
        if not repo_type or not repo_info:
            error_msg = f"Repository '{repo_name}' not found as model, dataset, or space"
            print(f"❌ {error_msg}")
            return [f"Error: {error_msg}"]
        
        print(f"πŸ“‹ Repository type: {repo_type}")
        current_tags = repo_info.tags if repo_info.tags else []
        print(f"🏷️ Current tags: {current_tags}")
        
        # Process each tag
        for tag in all_tags:
            try:
                # Check if tag already exists
                if tag in current_tags:
                    msg = f"Tag '{tag}': Already exists"
                    print(f"βœ… {msg}")
                    result_messages.append(msg)
                    continue
                
                # Add the new tag
                print(f"πŸ”§ Adding tag '{tag}' to {repo_type} '{repo_name}'")
                updated_tags = current_tags + [tag]
                
                # Create model card content with updated tags
                try:
                    # Load existing model card
                    print(f"πŸ“„ Loading existing model card...")
                    card = ModelCard.load(repo_name, token=HF_TOKEN, repo_type=repo_type)
                    if not hasattr(card, "data") or card.data is None:
                        card.data = ModelCardData()
                except HfHubHTTPError:
                    # Create new model card if none exists
                    print(f"πŸ“„ Creating new model card (none exists)")
                    card = ModelCard("")
                    card.data = ModelCardData()
                
                # Update tags
                card_dict = card.data.to_dict()
                card_dict["tags"] = updated_tags
                card.data = ModelCardData(**card_dict)
                
                # Create a pull request with the updated model card
                pr_title = f"Add '{tag}' tag"
                pr_description = f"""

## Add tag: {tag}



This PR adds the `{tag}` tag to the {repo_type} repository.



**Changes:**

- Added `{tag}` to {repo_type} tags

- Updated from {len(current_tags)} to {len(updated_tags)} tags



**Current tags:** {", ".join(current_tags) if current_tags else "None"}

**New tags:** {", ".join(updated_tags)}

"""
                
                print(f"πŸš€ Creating PR with title: {pr_title}")
                
                # Create commit with updated model card
                commit_info = hf_api.create_commit(
                    repo_id=repo_name,
                    repo_type=repo_type,
                    operations=[
                        CommitOperationAdd(
                            path_in_repo="README.md", 
                            path_or_fileobj=str(card).encode("utf-8")
                        )
                    ],
                    commit_message=pr_title,
                    commit_description=pr_description,
                    token=HF_TOKEN,
                    create_pr=True,
                )
                
                # Extract PR URL from commit info
                pr_url = getattr(commit_info, 'pr_url', str(commit_info))
                
                print(f"βœ… PR created successfully! URL: {pr_url}")
                msg = f"Tag '{tag}': PR created - {pr_url}"
                result_messages.append(msg)
                
            except Exception as tag_error:
                error_msg = f"Tag '{tag}': Error - {str(tag_error)}"
                print(f"❌ {error_msg}")
                result_messages.append(error_msg)
        
        return result_messages
        
    except Exception as e:
        error_msg = f"Direct API processing failed: {str(e)}"
        print(f"❌ {error_msg}")
        return [error_msg]


async def process_webhook_comment(webhook_data: Dict[str, Any]):
    """Process webhook to detect and add tags"""
    print("🏷️ Starting process_webhook_comment...")

    try:
        comment_content = webhook_data["comment"]["content"]
        discussion_title = webhook_data["discussion"]["title"]
        repo_name = webhook_data["repo"]["name"]
        discussion_num = webhook_data["discussion"]["num"]
        comment_author = webhook_data["comment"]["author"].get("id", "unknown")

        print(f"πŸ“ Comment content: {comment_content}")
        print(f"πŸ“° Discussion title: {discussion_title}")
        print(f"πŸ“¦ Repository: {repo_name}")

        # Extract potential tags from the comment and discussion title
        comment_tags = extract_tags_from_text(comment_content)
        title_tags = extract_tags_from_text(discussion_title)
        all_tags = list(set(comment_tags + title_tags))

        print(f"πŸ” Comment tags found: {comment_tags}")
        print(f"πŸ” Title tags found: {title_tags}")
        print(f"🏷️ All unique tags: {all_tags}")

        result_messages = []

        if not all_tags:
            msg = "No recognizable tags found in the discussion."
            print(f"❌ {msg}")
            result_messages.append(msg)
        else:
            # Skip agent entirely and use direct API approach
            print("πŸ”§ Using direct HuggingFace Hub API processing...")
            result_messages = await process_tags_directly(all_tags, repo_name)

        # Store the interaction
        base_url = "https://huggingface.co"
        discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"

        interaction = {
            "timestamp": datetime.now().isoformat(),
            "repo": repo_name,
            "discussion_title": discussion_title,
            "discussion_num": discussion_num,
            "discussion_url": discussion_url,
            "original_comment": comment_content,
            "comment_author": comment_author,
            "detected_tags": all_tags,
            "results": result_messages,
        }

        tag_operations_store.append(interaction)
        final_result = " | ".join(result_messages)
        print(f"πŸ’Ύ Stored interaction and returning result: {final_result}")
        return final_result

    except Exception as e:
        error_msg = f"❌ Fatal error in process_webhook_comment: {str(e)}"
        print(error_msg)
        import traceback
        print(f"❌ Traceback: {traceback.format_exc()}")
        return error_msg


@app.post("/webhook")
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
    """Handle HF Hub webhooks"""
    webhook_secret = request.headers.get("X-Webhook-Secret")
    if webhook_secret != WEBHOOK_SECRET:
        print("❌ Invalid webhook secret")
        return {"error": "Invalid webhook secret"}

    payload = await request.json()
    print(f"πŸ“₯ Received webhook payload: {json.dumps(payload, indent=2)}")

    event = payload.get("event", {})
    scope = event.get("scope")
    action = event.get("action")

    print(f"πŸ” Event details - scope: {scope}, action: {action}")

    # Check if this is a discussion comment creation
    scope_check = scope == "discussion"
    action_check = action == "create"
    not_pr = not payload["discussion"]["isPullRequest"]
    scope_check = scope_check and not_pr
    print(f"βœ… not_pr: {not_pr}")
    print(f"βœ… scope_check: {scope_check}")
    print(f"βœ… action_check: {action_check}")

    if scope_check and action_check:
        # Verify we have the required fields
        required_fields = ["comment", "discussion", "repo"]
        missing_fields = [field for field in required_fields if field not in payload]

        if missing_fields:
            error_msg = f"Missing required fields: {missing_fields}"
            print(f"❌ {error_msg}")
            return {"error": error_msg}

        print(f"πŸš€ Processing webhook for repo: {payload['repo']['name']}")
        background_tasks.add_task(process_webhook_comment, payload)
        return {"status": "processing"}

    print(f"⏭️ Ignoring webhook - scope: {scope}, action: {action}")
    return {"status": "ignored"}


async def simulate_webhook(

    repo_name: str, discussion_title: str, comment_content: str

) -> str:
    """Simulate webhook for testing"""
    if not all([repo_name, discussion_title, comment_content]):
        return "Please fill in all fields."

    mock_payload = {
        "event": {"action": "create", "scope": "discussion"},
        "comment": {
            "content": comment_content,
            "author": {"id": "test-user-id"},
            "id": "mock-comment-id",
            "hidden": False,
        },
        "discussion": {
            "title": discussion_title,
            "num": len(tag_operations_store) + 1,
            "id": "mock-discussion-id",
            "status": "open",
            "isPullRequest": False,
        },
        "repo": {
            "name": repo_name,
            "type": "model",
            "private": False,
        },
    }

    response = await process_webhook_comment(mock_payload)
    return f"βœ… Processed! Results: {response}"


def create_gradio_app():
    """Create Gradio interface"""
    with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🏷️ HF Tagging Bot Dashboard")
        gr.Markdown("*Automatically adds tags to models, datasets, and spaces when mentioned in discussions*")

        gr.Markdown("""

        ## How it works:

        - Monitors HuggingFace Hub discussions

        - Detects tag mentions in comments (e.g., "tag: pytorch", "#transformers")

        - Automatically detects repository type (model/dataset/space)

        - Creates pull requests to add recognized tags to the repository

        - Supports common ML tags like: pytorch, tensorflow, text-generation, etc.

        """)

        with gr.Column():
            sim_repo = gr.Textbox(
                label="Repository",
                value="burtenshaw/play-mcp-repo-bot",
                placeholder="username/repo-name (can be model, dataset, or space)",
            )
            sim_title = gr.Textbox(
                label="Discussion Title",
                value="Add pytorch tag",
                placeholder="Discussion title",
            )
            sim_comment = gr.Textbox(
                label="Comment",
                lines=3,
                value="This repository should have tags: pytorch, text-generation",
                placeholder="Comment mentioning tags...",
            )
            sim_btn = gr.Button("🏷️ Test Tag Detection")

        with gr.Column():
            sim_result = gr.Textbox(label="Result", lines=8)

        sim_btn.click(
            fn=simulate_webhook,
            inputs=[sim_repo, sim_title, sim_comment],
            outputs=sim_result,
        )

        gr.Markdown(f"""

        ## Recognized Tags:

        {", ".join(sorted(RECOGNIZED_TAGS))}

        """)

        # Add recent operations section
        if tag_operations_store:
            gr.Markdown("## Recent Operations")
            for op in tag_operations_store[-5:]:  # Show last 5 operations
                gr.Markdown(f"""

                **{op['repo']}** - {op['timestamp'][:19]}

                - Tags: {', '.join(op['detected_tags'])}

                - Results: {' | '.join(op['results'][:2])}...

                """)

    return demo


# Mount Gradio app
gradio_app = create_gradio_app()
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")


if __name__ == "__main__":
    print("πŸš€ Starting HF Tagging Bot...")
    print(f"πŸ“Š Dashboard: http://localhost:7860/gradio")
    print(f"πŸ”— Webhook: http://localhost:7860/webhook")
    print(f"πŸ”‘ HF_TOKEN configured: {bool(HF_TOKEN)}")
    print("πŸ”§ Using direct HuggingFace Hub API (Windows compatible)")
    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)