Spaces:
No application file
No application file
Upload 4 files
Browse files- best.pt +3 -0
- packages.txt +1 -0
- requirements.txt +11 -0
- streamlitTEST.py +84 -0
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3899264fa4f4f1dd5b79b2bd748597aa7bb400e5ec57244b5dace63bb451c45
|
3 |
+
size 52028609
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libgl1
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask==3.0.3
|
2 |
+
ipython==8.12.3
|
3 |
+
numpy==2.0.0
|
4 |
+
opencv_python==4.9.0.80
|
5 |
+
opencv_python_headless==4.10.0.84
|
6 |
+
pandas==2.2.2
|
7 |
+
Pillow==10.4.0
|
8 |
+
Requests==2.32.3
|
9 |
+
roboflow==1.1.34
|
10 |
+
streamlit==1.36.0
|
11 |
+
ultralytics==8.0.196
|
streamlitTEST.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
def greeting(name):
|
7 |
+
return f"Hello from module2, {name}!"
|
8 |
+
|
9 |
+
# Function to process the image, classify it, and crop if clear
|
10 |
+
def process_image(file_path):
|
11 |
+
model = YOLO("best.pt", "v8")
|
12 |
+
|
13 |
+
# Predict with the model
|
14 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_image:
|
15 |
+
temp_image.close()
|
16 |
+
Image.open(file_path).save(temp_image.name)
|
17 |
+
results = model.predict(source=temp_image.name, conf=0.4, save=True)
|
18 |
+
|
19 |
+
blur_conf_threshold = 0.5
|
20 |
+
clear_conf_threshold = 0.9
|
21 |
+
|
22 |
+
# Initialize flags
|
23 |
+
is_blur = False
|
24 |
+
is_clear = False
|
25 |
+
cropped_image = None
|
26 |
+
|
27 |
+
# Process results
|
28 |
+
for result in results[0].boxes:
|
29 |
+
confidence = result.conf[0].item() # Extract the confidence score
|
30 |
+
if blur_conf_threshold <= confidence <= clear_conf_threshold:
|
31 |
+
is_blur = True
|
32 |
+
elif confidence > clear_conf_threshold:
|
33 |
+
is_clear = True
|
34 |
+
box = result.xyxy[0].tolist() # Extract bounding box coordinates
|
35 |
+
cropped_image = crop_image(file_path, box)
|
36 |
+
|
37 |
+
# Return classification and cropped image
|
38 |
+
if is_blur:
|
39 |
+
return 'The image is blurry. Please reupload the image again!', None
|
40 |
+
elif is_clear:
|
41 |
+
return 'The image is clear', cropped_image
|
42 |
+
else:
|
43 |
+
s=("Not Detected! The image is uncertain. Please reupload the image again!")
|
44 |
+
return s, None
|
45 |
+
|
46 |
+
# Function to crop the image based on bounding box
|
47 |
+
def crop_image(file_path, box):
|
48 |
+
image = Image.open(file_path)
|
49 |
+
cropped_image = image.crop(box)
|
50 |
+
return cropped_image
|
51 |
+
|
52 |
+
def greeting(name):
|
53 |
+
return f"Hello module2, {name}!"
|
54 |
+
|
55 |
+
# Streamlit app
|
56 |
+
def main():
|
57 |
+
st.title('Welcome to my AI project')
|
58 |
+
st.title('Document Detection')
|
59 |
+
st.text('This is a web app to:\n1- Detect documents\n2- Classify if document is clear or blurry\n3- Crop the document image!')
|
60 |
+
|
61 |
+
# File uploader
|
62 |
+
uploaded_file = st.file_uploader('Upload your image here:', type=['png', 'jpg', 'jpeg'])
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
if uploaded_file is not None:
|
67 |
+
# Display the uploaded image
|
68 |
+
image = Image.open(uploaded_file)
|
69 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
70 |
+
st.success("Photo uploaded successfully!")
|
71 |
+
|
72 |
+
# Process the image and get classification and cropped image
|
73 |
+
classification, cropped_image = process_image(uploaded_file)
|
74 |
+
|
75 |
+
# Display classification result
|
76 |
+
st.write('Classification result:', classification)
|
77 |
+
|
78 |
+
# Display cropped image if classification is clear
|
79 |
+
if cropped_image is not None:
|
80 |
+
st.image(cropped_image, caption='Cropped Document Image.', use_column_width=True)
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
main()
|
84 |
+
|