Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,524 +1,524 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import json
|
4 |
-
from datetime import datetime
|
5 |
-
from typing import List, Dict, Any, Optional, Literal
|
6 |
-
|
7 |
-
from fastapi import FastAPI, Request, BackgroundTasks
|
8 |
-
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
import gradio as gr
|
10 |
-
import uvicorn
|
11 |
-
from pydantic import BaseModel
|
12 |
-
from huggingface_hub.inference._mcp.agent import Agent
|
13 |
-
from dotenv import load_dotenv
|
14 |
-
|
15 |
-
load_dotenv()
|
16 |
-
|
17 |
-
# Configuration
|
18 |
-
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "5a775af722adc63d0b895454e3fb7a50cbc62bfa3f97e37d50d1a986c91d8781")
|
19 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
20 |
-
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
|
21 |
-
# Use a valid provider literal from the documentation
|
22 |
-
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference"
|
23 |
-
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER)
|
24 |
-
|
25 |
-
# Simple storage for processed tag operations
|
26 |
-
tag_operations_store: List[Dict[str, Any]] = []
|
27 |
-
|
28 |
-
# Agent instance
|
29 |
-
agent_instance: Optional[Agent] = None
|
30 |
-
|
31 |
-
# Common ML tags that we recognize for auto-tagging
|
32 |
-
RECOGNIZED_TAGS = {
|
33 |
-
"pytorch",
|
34 |
-
"tensorflow",
|
35 |
-
"jax",
|
36 |
-
"transformers",
|
37 |
-
"diffusers",
|
38 |
-
"text-generation",
|
39 |
-
"text-classification",
|
40 |
-
"question-answering",
|
41 |
-
"text-to-image",
|
42 |
-
"image-classification",
|
43 |
-
"object-detection",
|
44 |
-
" ",
|
45 |
-
"fill-mask",
|
46 |
-
"token-classification",
|
47 |
-
"translation",
|
48 |
-
"summarization",
|
49 |
-
"feature-extraction",
|
50 |
-
"sentence-similarity",
|
51 |
-
"zero-shot-classification",
|
52 |
-
"image-to-text",
|
53 |
-
"automatic-speech-recognition",
|
54 |
-
"audio-classification",
|
55 |
-
"voice-activity-detection",
|
56 |
-
"depth-estimation",
|
57 |
-
"image-segmentation",
|
58 |
-
"video-classification",
|
59 |
-
"reinforcement-learning",
|
60 |
-
"tabular-classification",
|
61 |
-
"tabular-regression",
|
62 |
-
"time-series-forecasting",
|
63 |
-
"graph-ml",
|
64 |
-
"robotics",
|
65 |
-
"computer-vision",
|
66 |
-
"nlp",
|
67 |
-
"cv",
|
68 |
-
"multimodal",
|
69 |
-
}
|
70 |
-
|
71 |
-
|
72 |
-
class WebhookEvent(BaseModel):
|
73 |
-
event: Dict[str, str]
|
74 |
-
comment: Dict[str, Any]
|
75 |
-
discussion: Dict[str, Any]
|
76 |
-
repo: Dict[str, str]
|
77 |
-
|
78 |
-
|
79 |
-
app = FastAPI(title="HF Tagging Bot")
|
80 |
-
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
81 |
-
|
82 |
-
|
83 |
-
async def get_agent():
|
84 |
-
"""Get or create Agent instance"""
|
85 |
-
print("π€ get_agent() called...")
|
86 |
-
global agent_instance
|
87 |
-
if agent_instance is None and HF_TOKEN:
|
88 |
-
print("π§ Creating new Agent instance...")
|
89 |
-
print(f"π HF_TOKEN present: {bool(HF_TOKEN)}")
|
90 |
-
print(f"π€ Model: {HF_MODEL}")
|
91 |
-
print(f"π Provider: {DEFAULT_PROVIDER}")
|
92 |
-
|
93 |
-
try:
|
94 |
-
agent_instance = Agent(
|
95 |
-
model=HF_MODEL,
|
96 |
-
provider=DEFAULT_PROVIDER,
|
97 |
-
api_key=HF_TOKEN,
|
98 |
-
servers=[
|
99 |
-
{
|
100 |
-
"type": "stdio",
|
101 |
-
"config": {
|
102 |
-
"command": "python",
|
103 |
-
"args": ["mcp_server.py"],
|
104 |
-
"cwd": ".", # Ensure correct working directory
|
105 |
-
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
|
106 |
-
},
|
107 |
-
}
|
108 |
-
],
|
109 |
-
)
|
110 |
-
print("β
Agent instance created successfully")
|
111 |
-
print("π§ Loading tools...")
|
112 |
-
await agent_instance.load_tools()
|
113 |
-
print("β
Tools loaded successfully")
|
114 |
-
except Exception as e:
|
115 |
-
print(f"β Error creating/loading agent: {str(e)}")
|
116 |
-
agent_instance = None
|
117 |
-
elif agent_instance is None:
|
118 |
-
print("β No HF_TOKEN available, cannot create agent")
|
119 |
-
else:
|
120 |
-
print("β
Using existing agent instance")
|
121 |
-
|
122 |
-
return agent_instance
|
123 |
-
|
124 |
-
|
125 |
-
def extract_tags_from_text(text: str) -> List[str]:
|
126 |
-
"""Extract potential tags from discussion text"""
|
127 |
-
text_lower = text.lower()
|
128 |
-
|
129 |
-
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
|
130 |
-
explicit_tags = []
|
131 |
-
|
132 |
-
# Pattern 1: "tag: something" or "tags: something"
|
133 |
-
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
|
134 |
-
matches = re.findall(tag_pattern, text_lower)
|
135 |
-
for match in matches:
|
136 |
-
# Split by comma and clean up
|
137 |
-
tags = [tag.strip() for tag in match.split(",")]
|
138 |
-
explicit_tags.extend(tags)
|
139 |
-
|
140 |
-
# Pattern 2: "#hashtag" style
|
141 |
-
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
|
142 |
-
hashtag_matches = re.findall(hashtag_pattern, text_lower)
|
143 |
-
explicit_tags.extend(hashtag_matches)
|
144 |
-
|
145 |
-
# Pattern 3: Look for recognized tags mentioned in natural text
|
146 |
-
mentioned_tags = []
|
147 |
-
for tag in RECOGNIZED_TAGS:
|
148 |
-
if tag in text_lower:
|
149 |
-
mentioned_tags.append(tag)
|
150 |
-
|
151 |
-
# Combine and deduplicate
|
152 |
-
all_tags = list(set(explicit_tags + mentioned_tags))
|
153 |
-
|
154 |
-
# Filter to only include recognized tags or explicitly mentioned ones
|
155 |
-
valid_tags = []
|
156 |
-
for tag in all_tags:
|
157 |
-
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
|
158 |
-
valid_tags.append(tag)
|
159 |
-
|
160 |
-
return valid_tags
|
161 |
-
|
162 |
-
|
163 |
-
async def process_webhook_comment(webhook_data: Dict[str, Any]):
|
164 |
-
"""Process webhook to detect and add tags"""
|
165 |
-
print("π·οΈ Starting process_webhook_comment...")
|
166 |
-
|
167 |
-
try:
|
168 |
-
comment_content = webhook_data["comment"]["content"]
|
169 |
-
discussion_title = webhook_data["discussion"]["title"]
|
170 |
-
repo_name = webhook_data["repo"]["name"]
|
171 |
-
discussion_num = webhook_data["discussion"]["num"]
|
172 |
-
# Author is an object with "id" field
|
173 |
-
comment_author = webhook_data["comment"]["author"].get("id", "unknown")
|
174 |
-
|
175 |
-
print(f"π Comment content: {comment_content}")
|
176 |
-
print(f"π° Discussion title: {discussion_title}")
|
177 |
-
print(f"π¦ Repository: {repo_name}")
|
178 |
-
|
179 |
-
# Extract potential tags from the comment and discussion title
|
180 |
-
comment_tags = extract_tags_from_text(comment_content)
|
181 |
-
title_tags = extract_tags_from_text(discussion_title)
|
182 |
-
all_tags = list(set(comment_tags + title_tags))
|
183 |
-
|
184 |
-
print(f"π Comment tags found: {comment_tags}")
|
185 |
-
print(f"π Title tags found: {title_tags}")
|
186 |
-
print(f"π·οΈ All unique tags: {all_tags}")
|
187 |
-
|
188 |
-
result_messages = []
|
189 |
-
|
190 |
-
if not all_tags:
|
191 |
-
msg = "No recognizable tags found in the discussion."
|
192 |
-
print(f"β {msg}")
|
193 |
-
result_messages.append(msg)
|
194 |
-
else:
|
195 |
-
print("π€ Getting agent instance...")
|
196 |
-
agent = await get_agent()
|
197 |
-
if not agent:
|
198 |
-
msg = "Error: Agent not configured (missing HF_TOKEN)"
|
199 |
-
print(f"β {msg}")
|
200 |
-
result_messages.append(msg)
|
201 |
-
else:
|
202 |
-
print("β
Agent instance obtained successfully")
|
203 |
-
|
204 |
-
# Process all tags in a single conversation with the agent
|
205 |
-
try:
|
206 |
-
# Create a comprehensive prompt for the agent
|
207 |
-
user_prompt = f"""
|
208 |
-
I need to add the following tags to the repository '{repo_name}': {", ".join(all_tags)}
|
209 |
-
|
210 |
-
For each tag, please:
|
211 |
-
1. Check if the tag already exists on the repository using get_current_tags
|
212 |
-
2. If the tag doesn't exist, add it using add_new_tag
|
213 |
-
3. Provide a summary of what was done for each tag
|
214 |
-
|
215 |
-
Please process all {len(all_tags)} tags: {", ".join(all_tags)}
|
216 |
-
"""
|
217 |
-
|
218 |
-
print("π¬ Sending comprehensive prompt to agent...")
|
219 |
-
print(f"π Prompt: {user_prompt}")
|
220 |
-
|
221 |
-
# Let the agent handle the entire conversation
|
222 |
-
conversation_result = []
|
223 |
-
|
224 |
-
try:
|
225 |
-
async for item in agent.run(user_prompt):
|
226 |
-
# The agent yields different types of items
|
227 |
-
item_str = str(item)
|
228 |
-
conversation_result.append(item_str)
|
229 |
-
|
230 |
-
# Log important events
|
231 |
-
if (
|
232 |
-
"tool_call" in item_str.lower()
|
233 |
-
or "function" in item_str.lower()
|
234 |
-
):
|
235 |
-
print(f"π§ Agent using tools: {item_str[:200]}...")
|
236 |
-
elif "content" in item_str and len(item_str) < 500:
|
237 |
-
print(f"π Agent response: {item_str}")
|
238 |
-
|
239 |
-
# Extract the final response from the conversation
|
240 |
-
full_response = " ".join(conversation_result)
|
241 |
-
print(f"π Agent conversation completed successfully")
|
242 |
-
|
243 |
-
# Try to extract meaningful results for each tag
|
244 |
-
for tag in all_tags:
|
245 |
-
tag_mentioned = tag.lower() in full_response.lower()
|
246 |
-
|
247 |
-
if (
|
248 |
-
"already exists" in full_response.lower()
|
249 |
-
and tag_mentioned
|
250 |
-
):
|
251 |
-
msg = f"Tag '{tag}': Already exists"
|
252 |
-
elif (
|
253 |
-
"pr" in full_response.lower()
|
254 |
-
or "pull request" in full_response.lower()
|
255 |
-
):
|
256 |
-
if tag_mentioned:
|
257 |
-
msg = f"Tag '{tag}': PR created successfully"
|
258 |
-
else:
|
259 |
-
msg = (
|
260 |
-
f"Tag '{tag}': Processed "
|
261 |
-
"(PR may have been created)"
|
262 |
-
)
|
263 |
-
elif "success" in full_response.lower() and tag_mentioned:
|
264 |
-
msg = f"Tag '{tag}': Successfully processed"
|
265 |
-
elif "error" in full_response.lower() and tag_mentioned:
|
266 |
-
msg = f"Tag '{tag}': Error during processing"
|
267 |
-
else:
|
268 |
-
msg = f"Tag '{tag}': Processed by agent"
|
269 |
-
|
270 |
-
print(f"β
Result for tag '{tag}': {msg}")
|
271 |
-
result_messages.append(msg)
|
272 |
-
|
273 |
-
except Exception as agent_error:
|
274 |
-
print(f"β οΈ Agent streaming failed: {str(agent_error)}")
|
275 |
-
print("π Falling back to direct MCP tool calls...")
|
276 |
-
|
277 |
-
# Import the MCP server functions directly as fallback
|
278 |
-
try:
|
279 |
-
import sys
|
280 |
-
import importlib.util
|
281 |
-
|
282 |
-
# Load the MCP server module
|
283 |
-
spec = importlib.util.spec_from_file_location(
|
284 |
-
"mcp_server", "./mcp_server.py"
|
285 |
-
)
|
286 |
-
mcp_module = importlib.util.module_from_spec(spec)
|
287 |
-
spec.loader.exec_module(mcp_module)
|
288 |
-
|
289 |
-
# Use the MCP tools directly for each tag
|
290 |
-
for tag in all_tags:
|
291 |
-
try:
|
292 |
-
print(
|
293 |
-
f"π§ Directly calling get_current_tags for '{tag}'"
|
294 |
-
)
|
295 |
-
current_tags_result = mcp_module.get_current_tags(
|
296 |
-
repo_name
|
297 |
-
)
|
298 |
-
print(
|
299 |
-
f"π Current tags result: {current_tags_result}"
|
300 |
-
)
|
301 |
-
|
302 |
-
# Parse the JSON result
|
303 |
-
import json
|
304 |
-
|
305 |
-
tags_data = json.loads(current_tags_result)
|
306 |
-
|
307 |
-
if tags_data.get("status") == "success":
|
308 |
-
current_tags = tags_data.get("current_tags", [])
|
309 |
-
if tag in current_tags:
|
310 |
-
msg = f"Tag '{tag}': Already exists"
|
311 |
-
print(f"β
{msg}")
|
312 |
-
else:
|
313 |
-
print(
|
314 |
-
f"π§ Directly calling add_new_tag for '{tag}'"
|
315 |
-
)
|
316 |
-
add_result = mcp_module.add_new_tag(
|
317 |
-
repo_name, tag
|
318 |
-
)
|
319 |
-
print(f"π Add tag result: {add_result}")
|
320 |
-
|
321 |
-
add_data = json.loads(add_result)
|
322 |
-
if add_data.get("status") == "success":
|
323 |
-
pr_url = add_data.get("pr_url", "")
|
324 |
-
msg = f"Tag '{tag}': PR created - {pr_url}"
|
325 |
-
elif (
|
326 |
-
add_data.get("status")
|
327 |
-
== "already_exists"
|
328 |
-
):
|
329 |
-
msg = f"Tag '{tag}': Already exists"
|
330 |
-
else:
|
331 |
-
msg = f"Tag '{tag}': {add_data.get('message', 'Processed')}"
|
332 |
-
print(f"β
{msg}")
|
333 |
-
else:
|
334 |
-
error_msg = tags_data.get(
|
335 |
-
"error", "Unknown error"
|
336 |
-
)
|
337 |
-
msg = f"Tag '{tag}': Error - {error_msg}"
|
338 |
-
print(f"β {msg}")
|
339 |
-
|
340 |
-
result_messages.append(msg)
|
341 |
-
|
342 |
-
except Exception as direct_error:
|
343 |
-
error_msg = f"Tag '{tag}': Direct call error - {str(direct_error)}"
|
344 |
-
print(f"β {error_msg}")
|
345 |
-
result_messages.append(error_msg)
|
346 |
-
|
347 |
-
except Exception as fallback_error:
|
348 |
-
error_msg = (
|
349 |
-
f"Fallback approach failed: {str(fallback_error)}"
|
350 |
-
)
|
351 |
-
print(f"β {error_msg}")
|
352 |
-
result_messages.append(error_msg)
|
353 |
-
|
354 |
-
except Exception as e:
|
355 |
-
error_msg = f"Error during agent processing: {str(e)}"
|
356 |
-
print(f"β {error_msg}")
|
357 |
-
result_messages.append(error_msg)
|
358 |
-
|
359 |
-
# Store the interaction
|
360 |
-
base_url = "https://huggingface.co"
|
361 |
-
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"
|
362 |
-
|
363 |
-
interaction = {
|
364 |
-
"timestamp": datetime.now().isoformat(),
|
365 |
-
"repo": repo_name,
|
366 |
-
"discussion_title": discussion_title,
|
367 |
-
"discussion_num": discussion_num,
|
368 |
-
"discussion_url": discussion_url,
|
369 |
-
"original_comment": comment_content,
|
370 |
-
"comment_author": comment_author,
|
371 |
-
"detected_tags": all_tags,
|
372 |
-
"results": result_messages,
|
373 |
-
}
|
374 |
-
|
375 |
-
tag_operations_store.append(interaction)
|
376 |
-
final_result = " | ".join(result_messages)
|
377 |
-
print(f"πΎ Stored interaction and returning result: {final_result}")
|
378 |
-
return final_result
|
379 |
-
|
380 |
-
except Exception as e:
|
381 |
-
error_msg = f"β Fatal error in process_webhook_comment: {str(e)}"
|
382 |
-
print(error_msg)
|
383 |
-
return error_msg
|
384 |
-
|
385 |
-
|
386 |
-
@app.post("/webhook")
|
387 |
-
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
|
388 |
-
"""Handle HF Hub webhooks"""
|
389 |
-
webhook_secret = request.headers.get("X-Webhook-Secret")
|
390 |
-
if webhook_secret != WEBHOOK_SECRET:
|
391 |
-
print("β Invalid webhook secret")
|
392 |
-
return {"error": "Invalid webhook secret"}
|
393 |
-
|
394 |
-
payload = await request.json()
|
395 |
-
print(f"π₯ Received webhook payload: {json.dumps(payload, indent=2)}")
|
396 |
-
|
397 |
-
event = payload.get("event", {})
|
398 |
-
scope = event.get("scope")
|
399 |
-
action = event.get("action")
|
400 |
-
|
401 |
-
print(f"π Event details - scope: {scope}, action: {action}")
|
402 |
-
|
403 |
-
# Check if this is a discussion comment creation
|
404 |
-
scope_check = scope == "discussion"
|
405 |
-
action_check = action == "create"
|
406 |
-
not_pr = not payload["discussion"]["isPullRequest"]
|
407 |
-
scope_check = scope_check and not_pr
|
408 |
-
print(f"β
not_pr: {not_pr}")
|
409 |
-
print(f"β
scope_check: {scope_check}")
|
410 |
-
print(f"β
action_check: {action_check}")
|
411 |
-
|
412 |
-
if scope_check and action_check:
|
413 |
-
# Verify we have the required fields
|
414 |
-
required_fields = ["comment", "discussion", "repo"]
|
415 |
-
missing_fields = [field for field in required_fields if field not in payload]
|
416 |
-
|
417 |
-
if missing_fields:
|
418 |
-
error_msg = f"Missing required fields: {missing_fields}"
|
419 |
-
print(f"β {error_msg}")
|
420 |
-
return {"error": error_msg}
|
421 |
-
|
422 |
-
print(f"π Processing webhook for repo: {payload['repo']['name']}")
|
423 |
-
background_tasks.add_task(process_webhook_comment, payload)
|
424 |
-
return {"status": "processing"}
|
425 |
-
|
426 |
-
print(f"βοΈ Ignoring webhook - scope: {scope}, action: {action}")
|
427 |
-
return {"status": "ignored"}
|
428 |
-
|
429 |
-
|
430 |
-
async def simulate_webhook(
|
431 |
-
repo_name: str, discussion_title: str, comment_content: str
|
432 |
-
) -> str:
|
433 |
-
"""Simulate webhook for testing"""
|
434 |
-
if not all([repo_name, discussion_title, comment_content]):
|
435 |
-
return "Please fill in all fields."
|
436 |
-
|
437 |
-
mock_payload = {
|
438 |
-
"event": {"action": "create", "scope": "discussion"},
|
439 |
-
"comment": {
|
440 |
-
"content": comment_content,
|
441 |
-
"author": {"id": "test-user-id"},
|
442 |
-
"id": "mock-comment-id",
|
443 |
-
"hidden": False,
|
444 |
-
},
|
445 |
-
"discussion": {
|
446 |
-
"title": discussion_title,
|
447 |
-
"num": len(tag_operations_store) + 1,
|
448 |
-
"id": "mock-discussion-id",
|
449 |
-
"status": "open",
|
450 |
-
"isPullRequest": False,
|
451 |
-
},
|
452 |
-
"repo": {
|
453 |
-
"name": repo_name,
|
454 |
-
"type": "model",
|
455 |
-
"private": False,
|
456 |
-
},
|
457 |
-
}
|
458 |
-
|
459 |
-
response = await process_webhook_comment(mock_payload)
|
460 |
-
return f"β
Processed! Results: {response}"
|
461 |
-
|
462 |
-
|
463 |
-
def create_gradio_app():
|
464 |
-
"""Create Gradio interface"""
|
465 |
-
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
|
466 |
-
gr.Markdown("# π·οΈ HF Tagging Bot Dashboard")
|
467 |
-
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")
|
468 |
-
|
469 |
-
gr.Markdown("""
|
470 |
-
## How it works:
|
471 |
-
- Monitors HuggingFace Hub discussions
|
472 |
-
- Detects tag mentions in comments (e.g., "tag: pytorch",
|
473 |
-
"#transformers")
|
474 |
-
- Automatically adds recognized tags to the model repository
|
475 |
-
- Supports common ML tags like: pytorch, tensorflow,
|
476 |
-
text-generation, etc.
|
477 |
-
""")
|
478 |
-
|
479 |
-
with gr.Column():
|
480 |
-
sim_repo = gr.Textbox(
|
481 |
-
label="Repository",
|
482 |
-
value="burtenshaw/play-mcp-repo-bot",
|
483 |
-
placeholder="username/model-name",
|
484 |
-
)
|
485 |
-
sim_title = gr.Textbox(
|
486 |
-
label="Discussion Title",
|
487 |
-
value="Add pytorch tag",
|
488 |
-
placeholder="Discussion title",
|
489 |
-
)
|
490 |
-
sim_comment = gr.Textbox(
|
491 |
-
label="Comment",
|
492 |
-
lines=3,
|
493 |
-
value="This model should have tags: pytorch, text-generation",
|
494 |
-
placeholder="Comment mentioning tags...",
|
495 |
-
)
|
496 |
-
sim_btn = gr.Button("π·οΈ Test Tag Detection")
|
497 |
-
|
498 |
-
with gr.Column():
|
499 |
-
sim_result = gr.Textbox(label="Result", lines=8)
|
500 |
-
|
501 |
-
sim_btn.click(
|
502 |
-
fn=simulate_webhook,
|
503 |
-
inputs=[sim_repo, sim_title, sim_comment],
|
504 |
-
outputs=sim_result,
|
505 |
-
)
|
506 |
-
|
507 |
-
gr.Markdown(f"""
|
508 |
-
## Recognized Tags:
|
509 |
-
{", ".join(sorted(RECOGNIZED_TAGS))}
|
510 |
-
""")
|
511 |
-
|
512 |
-
return demo
|
513 |
-
|
514 |
-
|
515 |
-
# Mount Gradio app
|
516 |
-
gradio_app = create_gradio_app()
|
517 |
-
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
518 |
-
|
519 |
-
|
520 |
-
if __name__ == "__main__":
|
521 |
-
print("π Starting HF Tagging Bot...")
|
522 |
-
print("π Dashboard: http://localhost:7860/gradio")
|
523 |
-
print("π Webhook: http://localhost:7860/webhook")
|
524 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
from datetime import datetime
|
5 |
+
from typing import List, Dict, Any, Optional, Literal
|
6 |
+
|
7 |
+
from fastapi import FastAPI, Request, BackgroundTasks
|
8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
import gradio as gr
|
10 |
+
import uvicorn
|
11 |
+
from pydantic import BaseModel
|
12 |
+
from huggingface_hub.inference._mcp.agent import Agent
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Configuration
|
18 |
+
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "5a775af722adc63d0b895454e3fb7a50cbc62bfa3f97e37d50d1a986c91d8781")
|
19 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
20 |
+
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
|
21 |
+
# Use a valid provider literal from the documentation
|
22 |
+
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference"
|
23 |
+
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER)
|
24 |
+
|
25 |
+
# Simple storage for processed tag operations
|
26 |
+
tag_operations_store: List[Dict[str, Any]] = []
|
27 |
+
|
28 |
+
# Agent instance
|
29 |
+
agent_instance: Optional[Agent] = None
|
30 |
+
|
31 |
+
# Common ML tags that we recognize for auto-tagging
|
32 |
+
RECOGNIZED_TAGS = {
|
33 |
+
"pytorch",
|
34 |
+
"tensorflow",
|
35 |
+
"jax",
|
36 |
+
"transformers",
|
37 |
+
"diffusers",
|
38 |
+
"text-generation",
|
39 |
+
"text-classification",
|
40 |
+
"question-answering",
|
41 |
+
"text-to-image",
|
42 |
+
"image-classification",
|
43 |
+
"object-detection",
|
44 |
+
" ",
|
45 |
+
"fill-mask",
|
46 |
+
"token-classification",
|
47 |
+
"translation",
|
48 |
+
"summarization",
|
49 |
+
"feature-extraction",
|
50 |
+
"sentence-similarity",
|
51 |
+
"zero-shot-classification",
|
52 |
+
"image-to-text",
|
53 |
+
"automatic-speech-recognition",
|
54 |
+
"audio-classification",
|
55 |
+
"voice-activity-detection",
|
56 |
+
"depth-estimation",
|
57 |
+
"image-segmentation",
|
58 |
+
"video-classification",
|
59 |
+
"reinforcement-learning",
|
60 |
+
"tabular-classification",
|
61 |
+
"tabular-regression",
|
62 |
+
"time-series-forecasting",
|
63 |
+
"graph-ml",
|
64 |
+
"robotics",
|
65 |
+
"computer-vision",
|
66 |
+
"nlp",
|
67 |
+
"cv",
|
68 |
+
"multimodal",
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
class WebhookEvent(BaseModel):
|
73 |
+
event: Dict[str, str]
|
74 |
+
comment: Dict[str, Any]
|
75 |
+
discussion: Dict[str, Any]
|
76 |
+
repo: Dict[str, str]
|
77 |
+
|
78 |
+
|
79 |
+
app = FastAPI(title="HF Tagging Bot")
|
80 |
+
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
81 |
+
|
82 |
+
|
83 |
+
async def get_agent():
|
84 |
+
"""Get or create Agent instance"""
|
85 |
+
print("π€ get_agent() called...")
|
86 |
+
global agent_instance
|
87 |
+
if agent_instance is None and HF_TOKEN:
|
88 |
+
print("π§ Creating new Agent instance...")
|
89 |
+
print(f"π HF_TOKEN present: {bool(HF_TOKEN)}")
|
90 |
+
print(f"π€ Model: {HF_MODEL}")
|
91 |
+
print(f"π Provider: {DEFAULT_PROVIDER}")
|
92 |
+
|
93 |
+
try:
|
94 |
+
agent_instance = Agent(
|
95 |
+
model=HF_MODEL,
|
96 |
+
provider=DEFAULT_PROVIDER,
|
97 |
+
api_key=HF_TOKEN,
|
98 |
+
servers=[
|
99 |
+
{
|
100 |
+
"type": "stdio",
|
101 |
+
"config": {
|
102 |
+
"command": "python",
|
103 |
+
"args": ["mcp_server.py"],
|
104 |
+
"cwd": ".", # Ensure correct working directory
|
105 |
+
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
|
106 |
+
},
|
107 |
+
}
|
108 |
+
],
|
109 |
+
)
|
110 |
+
print("β
Agent instance created successfully")
|
111 |
+
print("π§ Loading tools...")
|
112 |
+
await agent_instance.load_tools()
|
113 |
+
print("β
Tools loaded successfully")
|
114 |
+
except Exception as e:
|
115 |
+
print(f"β Error creating/loading agent: {str(e)}")
|
116 |
+
agent_instance = None
|
117 |
+
elif agent_instance is None:
|
118 |
+
print("β No HF_TOKEN available, cannot create agent")
|
119 |
+
else:
|
120 |
+
print("β
Using existing agent instance")
|
121 |
+
|
122 |
+
return agent_instance
|
123 |
+
|
124 |
+
|
125 |
+
def extract_tags_from_text(text: str) -> List[str]:
|
126 |
+
"""Extract potential tags from discussion text"""
|
127 |
+
text_lower = text.lower()
|
128 |
+
|
129 |
+
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
|
130 |
+
explicit_tags = []
|
131 |
+
|
132 |
+
# Pattern 1: "tag: something" or "tags: something"
|
133 |
+
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
|
134 |
+
matches = re.findall(tag_pattern, text_lower)
|
135 |
+
for match in matches:
|
136 |
+
# Split by comma and clean up
|
137 |
+
tags = [tag.strip() for tag in match.split(",")]
|
138 |
+
explicit_tags.extend(tags)
|
139 |
+
|
140 |
+
# Pattern 2: "#hashtag" style
|
141 |
+
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
|
142 |
+
hashtag_matches = re.findall(hashtag_pattern, text_lower)
|
143 |
+
explicit_tags.extend(hashtag_matches)
|
144 |
+
|
145 |
+
# Pattern 3: Look for recognized tags mentioned in natural text
|
146 |
+
mentioned_tags = []
|
147 |
+
for tag in RECOGNIZED_TAGS:
|
148 |
+
if tag in text_lower:
|
149 |
+
mentioned_tags.append(tag)
|
150 |
+
|
151 |
+
# Combine and deduplicate
|
152 |
+
all_tags = list(set(explicit_tags + mentioned_tags))
|
153 |
+
|
154 |
+
# Filter to only include recognized tags or explicitly mentioned ones
|
155 |
+
valid_tags = []
|
156 |
+
for tag in all_tags:
|
157 |
+
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
|
158 |
+
valid_tags.append(tag)
|
159 |
+
|
160 |
+
return valid_tags
|
161 |
+
|
162 |
+
|
163 |
+
async def process_webhook_comment(webhook_data: Dict[str, Any]):
|
164 |
+
"""Process webhook to detect and add tags"""
|
165 |
+
print("π·οΈ Starting process_webhook_comment...")
|
166 |
+
|
167 |
+
try:
|
168 |
+
comment_content = webhook_data["comment"]["content"]
|
169 |
+
discussion_title = webhook_data["discussion"]["title"]
|
170 |
+
repo_name = webhook_data["repo"]["name"]
|
171 |
+
discussion_num = webhook_data["discussion"]["num"]
|
172 |
+
# Author is an object with "id" field
|
173 |
+
comment_author = webhook_data["comment"]["author"].get("id", "unknown")
|
174 |
+
|
175 |
+
print(f"π Comment content: {comment_content}")
|
176 |
+
print(f"π° Discussion title: {discussion_title}")
|
177 |
+
print(f"π¦ Repository: {repo_name}")
|
178 |
+
|
179 |
+
# Extract potential tags from the comment and discussion title
|
180 |
+
comment_tags = extract_tags_from_text(comment_content)
|
181 |
+
title_tags = extract_tags_from_text(discussion_title)
|
182 |
+
all_tags = list(set(comment_tags + title_tags))
|
183 |
+
|
184 |
+
print(f"π Comment tags found: {comment_tags}")
|
185 |
+
print(f"π Title tags found: {title_tags}")
|
186 |
+
print(f"π·οΈ All unique tags: {all_tags}")
|
187 |
+
|
188 |
+
result_messages = []
|
189 |
+
|
190 |
+
if not all_tags:
|
191 |
+
msg = "No recognizable tags found in the discussion."
|
192 |
+
print(f"β {msg}")
|
193 |
+
result_messages.append(msg)
|
194 |
+
else:
|
195 |
+
print("π€ Getting agent instance...")
|
196 |
+
agent = await get_agent()
|
197 |
+
if not agent:
|
198 |
+
msg = "Error: Agent not configured (missing HF_TOKEN)"
|
199 |
+
print(f"β {msg}")
|
200 |
+
result_messages.append(msg)
|
201 |
+
else:
|
202 |
+
print("β
Agent instance obtained successfully")
|
203 |
+
|
204 |
+
# Process all tags in a single conversation with the agent
|
205 |
+
try:
|
206 |
+
# Create a comprehensive prompt for the agent
|
207 |
+
user_prompt = f"""
|
208 |
+
I need to add the following tags to the repository '{repo_name}': {", ".join(all_tags)}
|
209 |
+
|
210 |
+
For each tag, please:
|
211 |
+
1. Check if the tag already exists on the repository using get_current_tags
|
212 |
+
2. If the tag doesn't exist, add it using add_new_tag
|
213 |
+
3. Provide a summary of what was done for each tag
|
214 |
+
|
215 |
+
Please process all {len(all_tags)} tags: {", ".join(all_tags)}
|
216 |
+
"""
|
217 |
+
|
218 |
+
print("π¬ Sending comprehensive prompt to agent...")
|
219 |
+
print(f"π Prompt: {user_prompt}")
|
220 |
+
|
221 |
+
# Let the agent handle the entire conversation
|
222 |
+
conversation_result = []
|
223 |
+
|
224 |
+
try:
|
225 |
+
async for item in agent.run(user_prompt):
|
226 |
+
# The agent yields different types of items
|
227 |
+
item_str = str(item)
|
228 |
+
conversation_result.append(item_str)
|
229 |
+
|
230 |
+
# Log important events
|
231 |
+
if (
|
232 |
+
"tool_call" in item_str.lower()
|
233 |
+
or "function" in item_str.lower()
|
234 |
+
):
|
235 |
+
print(f"π§ Agent using tools: {item_str[:200]}...")
|
236 |
+
elif "content" in item_str and len(item_str) < 500:
|
237 |
+
print(f"π Agent response: {item_str}")
|
238 |
+
|
239 |
+
# Extract the final response from the conversation
|
240 |
+
full_response = " ".join(conversation_result)
|
241 |
+
print(f"π Agent conversation completed successfully")
|
242 |
+
|
243 |
+
# Try to extract meaningful results for each tag
|
244 |
+
for tag in all_tags:
|
245 |
+
tag_mentioned = tag.lower() in full_response.lower()
|
246 |
+
|
247 |
+
if (
|
248 |
+
"already exists" in full_response.lower()
|
249 |
+
and tag_mentioned
|
250 |
+
):
|
251 |
+
msg = f"Tag '{tag}': Already exists"
|
252 |
+
elif (
|
253 |
+
"pr" in full_response.lower()
|
254 |
+
or "pull request" in full_response.lower()
|
255 |
+
):
|
256 |
+
if tag_mentioned:
|
257 |
+
msg = f"Tag '{tag}': PR created successfully"
|
258 |
+
else:
|
259 |
+
msg = (
|
260 |
+
f"Tag '{tag}': Processed "
|
261 |
+
"(PR may have been created)"
|
262 |
+
)
|
263 |
+
elif "success" in full_response.lower() and tag_mentioned:
|
264 |
+
msg = f"Tag '{tag}': Successfully processed"
|
265 |
+
elif "error" in full_response.lower() and tag_mentioned:
|
266 |
+
msg = f"Tag '{tag}': Error during processing"
|
267 |
+
else:
|
268 |
+
msg = f"Tag '{tag}': Processed by agent"
|
269 |
+
|
270 |
+
print(f"β
Result for tag '{tag}': {msg}")
|
271 |
+
result_messages.append(msg)
|
272 |
+
|
273 |
+
except Exception as agent_error:
|
274 |
+
print(f"β οΈ Agent streaming failed: {str(agent_error)}")
|
275 |
+
print("π Falling back to direct MCP tool calls...")
|
276 |
+
|
277 |
+
# Import the MCP server functions directly as fallback
|
278 |
+
try:
|
279 |
+
import sys
|
280 |
+
import importlib.util
|
281 |
+
|
282 |
+
# Load the MCP server module
|
283 |
+
spec = importlib.util.spec_from_file_location(
|
284 |
+
"mcp_server", "./mcp_server.py"
|
285 |
+
)
|
286 |
+
mcp_module = importlib.util.module_from_spec(spec)
|
287 |
+
spec.loader.exec_module(mcp_module)
|
288 |
+
|
289 |
+
# Use the MCP tools directly for each tag
|
290 |
+
for tag in all_tags:
|
291 |
+
try:
|
292 |
+
print(
|
293 |
+
f"π§ Directly calling get_current_tags for '{tag}'"
|
294 |
+
)
|
295 |
+
current_tags_result = mcp_module.get_current_tags(
|
296 |
+
repo_name
|
297 |
+
)
|
298 |
+
print(
|
299 |
+
f"π Current tags result: {current_tags_result}"
|
300 |
+
)
|
301 |
+
|
302 |
+
# Parse the JSON result
|
303 |
+
import json
|
304 |
+
|
305 |
+
tags_data = json.loads(current_tags_result)
|
306 |
+
|
307 |
+
if tags_data.get("status") == "success":
|
308 |
+
current_tags = tags_data.get("current_tags", [])
|
309 |
+
if tag in current_tags:
|
310 |
+
msg = f"Tag '{tag}': Already exists"
|
311 |
+
print(f"β
{msg}")
|
312 |
+
else:
|
313 |
+
print(
|
314 |
+
f"π§ Directly calling add_new_tag for '{tag}'"
|
315 |
+
)
|
316 |
+
add_result = mcp_module.add_new_tag(
|
317 |
+
repo_name, tag
|
318 |
+
)
|
319 |
+
print(f"π Add tag result: {add_result}")
|
320 |
+
|
321 |
+
add_data = json.loads(add_result)
|
322 |
+
if add_data.get("status") == "success":
|
323 |
+
pr_url = add_data.get("pr_url", "")
|
324 |
+
msg = f"Tag '{tag}': PR created - {pr_url}"
|
325 |
+
elif (
|
326 |
+
add_data.get("status")
|
327 |
+
== "already_exists"
|
328 |
+
):
|
329 |
+
msg = f"Tag '{tag}': Already exists"
|
330 |
+
else:
|
331 |
+
msg = f"Tag '{tag}': {add_data.get('message', 'Processed')}"
|
332 |
+
print(f"β
{msg}")
|
333 |
+
else:
|
334 |
+
error_msg = tags_data.get(
|
335 |
+
"error", "Unknown error"
|
336 |
+
)
|
337 |
+
msg = f"Tag '{tag}': Error - {error_msg}"
|
338 |
+
print(f"β {msg}")
|
339 |
+
|
340 |
+
result_messages.append(msg)
|
341 |
+
|
342 |
+
except Exception as direct_error:
|
343 |
+
error_msg = f"Tag '{tag}': Direct call error - {str(direct_error)}"
|
344 |
+
print(f"β {error_msg}")
|
345 |
+
result_messages.append(error_msg)
|
346 |
+
|
347 |
+
except Exception as fallback_error:
|
348 |
+
error_msg = (
|
349 |
+
f"Fallback approach failed: {str(fallback_error)}"
|
350 |
+
)
|
351 |
+
print(f"β {error_msg}")
|
352 |
+
result_messages.append(error_msg)
|
353 |
+
|
354 |
+
except Exception as e:
|
355 |
+
error_msg = f"Error during agent processing: {str(e)}"
|
356 |
+
print(f"β {error_msg}")
|
357 |
+
result_messages.append(error_msg)
|
358 |
+
|
359 |
+
# Store the interaction
|
360 |
+
base_url = "https://huggingface.co"
|
361 |
+
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"
|
362 |
+
|
363 |
+
interaction = {
|
364 |
+
"timestamp": datetime.now().isoformat(),
|
365 |
+
"repo": repo_name,
|
366 |
+
"discussion_title": discussion_title,
|
367 |
+
"discussion_num": discussion_num,
|
368 |
+
"discussion_url": discussion_url,
|
369 |
+
"original_comment": comment_content,
|
370 |
+
"comment_author": comment_author,
|
371 |
+
"detected_tags": all_tags,
|
372 |
+
"results": result_messages,
|
373 |
+
}
|
374 |
+
|
375 |
+
tag_operations_store.append(interaction)
|
376 |
+
final_result = " | ".join(result_messages)
|
377 |
+
print(f"πΎ Stored interaction and returning result: {final_result}")
|
378 |
+
return final_result
|
379 |
+
|
380 |
+
except Exception as e:
|
381 |
+
error_msg = f"β Fatal error in process_webhook_comment: {str(e)}"
|
382 |
+
print(error_msg)
|
383 |
+
return error_msg
|
384 |
+
|
385 |
+
|
386 |
+
@app.post("/webhook")
|
387 |
+
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
|
388 |
+
"""Handle HF Hub webhooks"""
|
389 |
+
webhook_secret = request.headers.get("X-Webhook-Secret")
|
390 |
+
if webhook_secret != WEBHOOK_SECRET:
|
391 |
+
print("β Invalid webhook secret")
|
392 |
+
return {"error": "Invalid webhook secret"}
|
393 |
+
|
394 |
+
payload = await request.json()
|
395 |
+
print(f"π₯ Received webhook payload: {json.dumps(payload, indent=2)}")
|
396 |
+
|
397 |
+
event = payload.get("event", {})
|
398 |
+
scope = event.get("scope")
|
399 |
+
action = event.get("action")
|
400 |
+
|
401 |
+
print(f"π Event details - scope: {scope}, action: {action}")
|
402 |
+
|
403 |
+
# Check if this is a discussion comment creation
|
404 |
+
scope_check = scope == "discussion.comment""
|
405 |
+
action_check = action == "create"
|
406 |
+
not_pr = not payload["discussion"]["isPullRequest"]
|
407 |
+
# scope_check = scope_check and not_pr
|
408 |
+
print(f"β
not_pr: {not_pr}")
|
409 |
+
print(f"β
scope_check: {scope_check}")
|
410 |
+
print(f"β
action_check: {action_check}")
|
411 |
+
|
412 |
+
if scope_check and action_check:
|
413 |
+
# Verify we have the required fields
|
414 |
+
required_fields = ["comment", "discussion", "repo"]
|
415 |
+
missing_fields = [field for field in required_fields if field not in payload]
|
416 |
+
|
417 |
+
if missing_fields:
|
418 |
+
error_msg = f"Missing required fields: {missing_fields}"
|
419 |
+
print(f"β {error_msg}")
|
420 |
+
return {"error": error_msg}
|
421 |
+
|
422 |
+
print(f"π Processing webhook for repo: {payload['repo']['name']}")
|
423 |
+
background_tasks.add_task(process_webhook_comment, payload)
|
424 |
+
return {"status": "processing"}
|
425 |
+
|
426 |
+
print(f"βοΈ Ignoring webhook - scope: {scope}, action: {action}")
|
427 |
+
return {"status": "ignored"}
|
428 |
+
|
429 |
+
|
430 |
+
async def simulate_webhook(
|
431 |
+
repo_name: str, discussion_title: str, comment_content: str
|
432 |
+
) -> str:
|
433 |
+
"""Simulate webhook for testing"""
|
434 |
+
if not all([repo_name, discussion_title, comment_content]):
|
435 |
+
return "Please fill in all fields."
|
436 |
+
|
437 |
+
mock_payload = {
|
438 |
+
"event": {"action": "create", "scope": "discussion"},
|
439 |
+
"comment": {
|
440 |
+
"content": comment_content,
|
441 |
+
"author": {"id": "test-user-id"},
|
442 |
+
"id": "mock-comment-id",
|
443 |
+
"hidden": False,
|
444 |
+
},
|
445 |
+
"discussion": {
|
446 |
+
"title": discussion_title,
|
447 |
+
"num": len(tag_operations_store) + 1,
|
448 |
+
"id": "mock-discussion-id",
|
449 |
+
"status": "open",
|
450 |
+
"isPullRequest": False,
|
451 |
+
},
|
452 |
+
"repo": {
|
453 |
+
"name": repo_name,
|
454 |
+
"type": "model",
|
455 |
+
"private": False,
|
456 |
+
},
|
457 |
+
}
|
458 |
+
|
459 |
+
response = await process_webhook_comment(mock_payload)
|
460 |
+
return f"β
Processed! Results: {response}"
|
461 |
+
|
462 |
+
|
463 |
+
def create_gradio_app():
|
464 |
+
"""Create Gradio interface"""
|
465 |
+
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
|
466 |
+
gr.Markdown("# π·οΈ HF Tagging Bot Dashboard")
|
467 |
+
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")
|
468 |
+
|
469 |
+
gr.Markdown("""
|
470 |
+
## How it works:
|
471 |
+
- Monitors HuggingFace Hub discussions
|
472 |
+
- Detects tag mentions in comments (e.g., "tag: pytorch",
|
473 |
+
"#transformers")
|
474 |
+
- Automatically adds recognized tags to the model repository
|
475 |
+
- Supports common ML tags like: pytorch, tensorflow,
|
476 |
+
text-generation, etc.
|
477 |
+
""")
|
478 |
+
|
479 |
+
with gr.Column():
|
480 |
+
sim_repo = gr.Textbox(
|
481 |
+
label="Repository",
|
482 |
+
value="burtenshaw/play-mcp-repo-bot",
|
483 |
+
placeholder="username/model-name",
|
484 |
+
)
|
485 |
+
sim_title = gr.Textbox(
|
486 |
+
label="Discussion Title",
|
487 |
+
value="Add pytorch tag",
|
488 |
+
placeholder="Discussion title",
|
489 |
+
)
|
490 |
+
sim_comment = gr.Textbox(
|
491 |
+
label="Comment",
|
492 |
+
lines=3,
|
493 |
+
value="This model should have tags: pytorch, text-generation",
|
494 |
+
placeholder="Comment mentioning tags...",
|
495 |
+
)
|
496 |
+
sim_btn = gr.Button("π·οΈ Test Tag Detection")
|
497 |
+
|
498 |
+
with gr.Column():
|
499 |
+
sim_result = gr.Textbox(label="Result", lines=8)
|
500 |
+
|
501 |
+
sim_btn.click(
|
502 |
+
fn=simulate_webhook,
|
503 |
+
inputs=[sim_repo, sim_title, sim_comment],
|
504 |
+
outputs=sim_result,
|
505 |
+
)
|
506 |
+
|
507 |
+
gr.Markdown(f"""
|
508 |
+
## Recognized Tags:
|
509 |
+
{", ".join(sorted(RECOGNIZED_TAGS))}
|
510 |
+
""")
|
511 |
+
|
512 |
+
return demo
|
513 |
+
|
514 |
+
|
515 |
+
# Mount Gradio app
|
516 |
+
gradio_app = create_gradio_app()
|
517 |
+
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
518 |
+
|
519 |
+
|
520 |
+
if __name__ == "__main__":
|
521 |
+
print("π Starting HF Tagging Bot...")
|
522 |
+
print("π Dashboard: http://localhost:7860/gradio")
|
523 |
+
print("π Webhook: http://localhost:7860/webhook")
|
524 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|