File size: 16,195 Bytes
a26dd44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
834a5a5
a26dd44
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import gradio as gr
import requests
import torch
import os
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.proxies import WebshareProxyConfig
from gtts import gTTS

# Initialize YouTubeTranscriptApi
proxy_username = os.environ.get('WEBSHARE_PROXY_UN')
proxy_password = os.environ.get('WEBSHARE_PROXY_PW')

ytt_api = None
try:
    if proxy_username and proxy_password:
        ytt_api = YouTubeTranscriptApi(
            proxy_config=WebshareProxyConfig(
                proxy_username=proxy_username,
                proxy_password=proxy_password,
                filter_ip_locations=["us"],
            )
        )
        print(f"Successfully connected to the Youtube API with proxy.")
    else:
        ytt_api = YouTubeTranscriptApi()
        print(f"Successfully connected to the Youtube API without proxy.")
except Exception as e:
    print(f"A proxy error occurred in connecting to the Youtube API: {e}")
    ytt_api = YouTubeTranscriptApi() # Fallback if proxy fails


def getEnglishTranscript(video_id):
  """Retrieves the English transcript for a given YouTube video ID."""
  if not ytt_api:
      print("YouTubeTranscriptApi not initialized.")
      return ""

  try:
      transcript_list = ytt_api.list(video_id)
      english_original = None
      for transcript in transcript_list:
          if(transcript.language_code == 'en'):
              english_original = transcript.fetch()
              break
      english_output = ""
      if english_original:
          for snippet in english_original:
              english_output += snippet.text + " "
      else:
          print(f"No English transcript found for video ID: {video_id}")
      return english_output.strip()
  except Exception as e:
      print(f"Error retrieving English transcript for video ID {video_id}: {e}")
      return ""


def getArabicTranscript(video_id):
  """Retrieves the Arabic transcript for a given YouTube video ID, translating if necessary."""
  if not ytt_api:
      print("YouTubeTranscriptApi not initialized.")
      return ""

  try:
      transcript_list = ytt_api.list(video_id)
      arabic_translation = None
      for transcript in transcript_list:
          if(transcript.is_translatable):
              arabic_language_code = None
              for lang in transcript.translation_languages:
                  if lang.language == 'Arabic':
                      arabic_language_code = lang.language_code
                      break
              if arabic_language_code:
                  print(f"\nTranslating to Arabic ({arabic_language_code})...")
                  arabic_translation = transcript.translate(arabic_language_code).fetch()
                  print("Arabic Translation Found and Stored.")
                  break # Exit after finding the first Arabic translation
      arabic_output = ""
      if arabic_translation:
          for snippet in arabic_translation:
              arabic_output += snippet.text + " "
      else:
          print(f"No translatable transcript found for Arabic for video ID: {video_id}")
      return arabic_output.strip()
  except Exception as e:
      print(f"Error retrieving or translating Arabic transcript for video ID {video_id}: {e}")
      return ""


def getFrenchTranscript(video_id):
  """Retrieves the French transcript for a given YouTube video ID, translating if necessary."""
  if not ytt_api:
      print("YouTubeTranscriptApi not initialized.")
      return ""

  try:
      transcript_list = ytt_api.list(video_id)
      french_translation = None
      for transcript in transcript_list:
          if(transcript.is_translatable):
              french_language_code = None
              for lang in transcript.translation_languages:
                  if lang.language == 'French':
                      french_language_code = lang.language_code
                      break
              if french_language_code:
                  print(f"\nTranslating to French ({french_language_code})...")
                  french_translation = transcript.translate(french_language_code).fetch()
                  print("French Translation Found and Stored.")
                  break # Exit after finding the first French translation
      french_output = ""
      if french_translation:
          for snippet in french_translation:
              french_output += snippet.text + " "
      else:
          print(f"No translatable transcript found for French for video ID: {video_id}")
      return french_output.strip()
  except Exception as e:
      print(f"Error retrieving or translating French transcript for video ID {video_id}: {e}")
      return ""

model, tokenizer, device = None, None, None
formatted_language_code = ""

def setModelAndTokenizer(language_code):
    """Sets the appropriate translation model and tokenizer based on the target language code."""
    global model, tokenizer, device, formatted_language_code

    _MODEL_NAME = None
    _readable_name = None

    if language_code == 'ar':
      _MODEL_NAME = "Helsinki-NLP/opus-mt-tc-big-en-ar"
      _readable_name = "English to Arabic"
    elif language_code == 'fr':
      _MODEL_NAME = "Helsinki-NLP/opus-mt-tc-big-en-fr"
      _readable_name = "English to French"
    elif language_code == 'ha':
      _MODEL_NAME = "facebook/nllb-200-distilled-600M"
      _readable_name = "English to Hausa"
      formatted_language_code = "hau_Latn"
    elif language_code == 'fa':
      _MODEL_NAME = "facebook/nllb-200-distilled-600M"
      _readable_name = "English to Dari/Afghan Persian"
      formatted_language_code = "pes_Arab"
    elif language_code == 'ps':
      _MODEL_NAME = "facebook/nllb-200-distilled-600M"
      _readable_name = "English to Pashto"
      formatted_language_code = "pbt_Arab"
    else:
      return f"Language code '{language_code}' not supported for translation model."

    if model is not None and tokenizer is not None and hasattr(tokenizer, 'name_or_path') and tokenizer.name_or_path == _MODEL_NAME:
        print(f"Model and tokenizer for {_readable_name} already loaded.")
        return f"Model and tokenizer for {_readable_name} already loaded."


    print(f"Loading model and tokenizer for {_readable_name}...")
    if "Helsinki-NLP" in _MODEL_NAME:
      try:
        tokenizer = MarianTokenizer.from_pretrained(_MODEL_NAME)
        model = MarianMTModel.from_pretrained(_MODEL_NAME)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model.to(device)
        print(f"Successfully loaded Helsinki-NLP model: {_MODEL_NAME}")
      except Exception as e:
        print(f"Error loading Helsinki-NLP model or tokenizer: {e}")
        return "Error loading translation model."

    elif "facebook" in _MODEL_NAME:
      try:
        tokenizer = AutoTokenizer.from_pretrained(_MODEL_NAME)
        model = AutoModelForSeq2SeqLM.from_pretrained(_MODEL_NAME, device_map="auto")
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model.to(device)
        print(f"Successfully loaded Facebook NLLB model: {_MODEL_NAME}")
      except Exception as e:
        print(f"Error loading Facebook NLLB model or tokenizer: {e}")
        return "Error loading translation model."
    else:
        return f"Unknown model type for {_MODEL_NAME}"

    return f"Model and tokenizer set for {_readable_name}."


def chunk_text_by_tokens(text, tokenizer, max_tokens):
    """Splits text into chunks based on token count."""
    words = text.split()
    chunks = []
    current_chunk = []
    for word in words:
        trial_chunk = current_chunk + [word]
        # Use add_special_tokens=False to get token count of just the words
        num_tokens = len(tokenizer(" ".join(trial_chunk), add_special_tokens=False).input_ids)
        if num_tokens > max_tokens:
            if current_chunk:
                chunks.append(" ".join(current_chunk))
            current_chunk = [word]
        else:
            current_chunk = trial_chunk
    if current_chunk:
        chunks.append(" ".join(current_chunk))
    return chunks


def translate_me(text, language_code):
    """Translates the input text to the target language using the loaded model."""
    global model, tokenizer, device, formatted_language_code

    if model is None or tokenizer is None:
        status = setModelAndTokenizer(language_code)
        if "Error" in status or "not supported" in status:
            print(status)
            return f"Translation failed: {status}"

    if text is None or text.strip() == "":
        return "No text to translate."

    try:
        if language_code in ['ar', 'fr']:
          inputs = tokenizer(text, return_tensors="pt", padding=True).to(device)
          translated = model.generate(**inputs)
          return tokenizer.decode(translated[0], skip_special_tokens=True)

        elif language_code in ['ha','fa','ps']:
          SAFE_CHUNK_SIZE = 900
          tokenizer.src_lang = "eng_Latn"  # English
          bos_token_id = tokenizer.convert_tokens_to_ids([formatted_language_code])[0]
          chunks = chunk_text_by_tokens(text, tokenizer, SAFE_CHUNK_SIZE)
          translations = []
          for chunk in chunks:
            inputs = tokenizer(chunk, return_tensors="pt").to(device)
            translated_tokens = model.generate(
                **inputs,
                forced_bos_token_id=bos_token_id,
                max_length=512
            )
            translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
            translations.append(translation)
          return "\n".join(translations)
        else:
            return f"Translation not implemented for language code: {language_code}"

    except Exception as e:
        print(f"Error during translation: {e}")
        return "Error during translation."


def say_it_api(text, _out_lang):
    """
    Converts text to speech using gTTS and saves it to a temporary file.
    Returns the file path.
    """
    if text is None or text.strip() == "":
        print("No text provided for gTTS speech generation.")
        return None
    try:
        tts = gTTS(text=text, lang=_out_lang)
        filename = "/tmp/gtts_audio.mp3"
        tts.save(filename)
        return filename
    except Exception as e:
        print(f"Error during gTTS speech generation: {e}")
        return None

def speak_with_elevenlabs_api(text, language_code):
    """
    Converts text to speech using ElevenLabs API and saves it to a temporary file.
    Returns the file path.
    """
    ELEVENLABS_API_KEY = os.environ.get('ELEVENLABS_API_KEY')
    VOICE_ID = "EXAVITQu4vr4xnSDxMaL"  # Rachel; see docs for voices

    if not ELEVENLABS_API_KEY:
        print("ElevenLabs API key not found in environment variables.")
        return None

    if text is None or text.strip() == "":
        print("No text provided for ElevenLabs speech generation.")
        return None

    url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}"
    headers = {
        "xi-api-key": ELEVENLABS_API_KEY,
        "Content-Type": "application/json"
    }
    data = {
        "text": text,
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 0.5,
            "similarity_boost": 0.5
        }
    }
    try:
        response = requests.post(url, headers=headers, json=data)
        if response.status_code == 200:
            filename = "/tmp/elevenlabs_audio.mp3"
            with open(filename, 'wb') as f:
                f.write(response.content)
            return filename
        else:
            print(f"Error from ElevenLabs API: Status Code {response.status_code}, Response: {response.text}")
            return None
    except Exception as e:
        print(f"Error calling ElevenLabs API: {e}")
        return None


def speechRouter_api(text,language_code):
    """
    Routes text-to-speech requests based on language code and returns the audio file path.
    """
    if text is None or text.strip() == "":
        return None # No text to speak

    if language_code == 'ar':
      return say_it_api(text,language_code)
    elif language_code == 'fr':
      return say_it_api(text,language_code)
    elif language_code in ['ha', 'fa', 'ps']:
      return speak_with_elevenlabs_api(text, language_code)
    else:
      print(f"Language code '{language_code}' not supported for speech generation.")
      return None


def translate_and_speak_api_wrapper(video_id, out_lang):
  """
  Translates the given English text from a Youtube video transcript
  to other languages and generates speech for the translated text.

  Args:
    video_id: The Youtube video ID to translate and speak.
    out_lang: The language to translate to.

  Returns:
    A tuple containing:
      - translated_text (str): The translated text.
      - audio_file_path (str or None): The path to the generated audio file, or None if speech generation failed.
  """
  # Ensure model and tokenizer are loaded for the target language
  model_status = setModelAndTokenizer(out_lang)
  if "Error" in model_status or "not supported" in model_status:
      return f"Translation failed: {model_status}", None

  english_text = getEnglishTranscript(video_id)

  if english_text == "":
      return "No English transcript available to translate.", None

  translated_text = ""
  if out_lang == "ar":
    translated_text = getArabicTranscript(video_id)
    if translated_text.strip() == "": # If no direct Arabic transcript, translate English
      print("No direct Arabic transcript found, translating from English.")
      translated_text = translate_me(english_text,out_lang)
  elif out_lang == "fr":
    translated_text = getFrenchTranscript(video_id)
    if translated_text.strip() == "": # If no direct French transcript, translate English
      print("No direct French transcript found, translating from English.")
      translated_text = translate_me(english_text,out_lang)
  elif out_lang in ["ha", "fa", "ps"]:
    translated_text = translate_me(english_text,out_lang)
  else:
      return f"Language code '{out_lang}' not supported for translation.", None

  if translated_text is None or translated_text.strip() == "" or "Translation failed" in translated_text:
      return f"Translation to {out_lang} failed.", None

  # Generate speech using the API wrapper
  audio_file_path = speechRouter_api(translated_text, out_lang)

  return translated_text, audio_file_path

# This function will serve as the API endpoint for Gradio.
def translate_and_speak_api(video_id: str, language_code: str):
    """
    API endpoint to translate and speak YouTube video transcripts.
    """
    print(f"Received request for video ID: {video_id}, language: {language_code}")
    translated_text, audio_file_path = translate_and_speak_api_wrapper(video_id, language_code)

    # Return the translated text and the audio file path (or an empty string if None)
    # Returning an empty string instead of None for the audio output might resolve
    # the TypeError when autoplay is True.
    return translated_text, audio_file_path if audio_file_path is not None else ""


# Define input components
video_id_input = gr.Textbox(label="YouTube Video ID")
language_dropdown = gr.Dropdown(
    label="Target Language",
    choices=['ar', 'fr', 'ha', 'fa', 'ps'], # Supported language codes
    value='ar' # Default value
)

# Define output components
translated_text_output = gr.Textbox(label="Translated Text")
audio_output = gr.Audio(label="Translated Speech", autoplay=True)

# Combine components and the translate_and_speak_api function into a Gradio interface
demo = gr.Interface(
    fn=translate_and_speak_api, # Use the API endpoint function
    inputs=[video_id_input, language_dropdown], # Inputs match the API function arguments
    outputs=[translated_text_output, audio_output], # Outputs match the API function return values
    title="YouTube Translator and Speaker",
    description="Enter a YouTube video ID and select a language to get the translated transcript and speech."
)

# ---- Launch Gradio ----

if __name__ == "__main__":
    demo.launch()