import torch from ABSA.model import BERT_BiLSTM_CRF # Same model class you defined from transformers import AutoTokenizer, AutoModel import json # Load tokenizer and base model model_path = "saved_model" tokenizer = AutoTokenizer.from_pretrained(model_path) base_model = AutoModel.from_pretrained(model_path) # Load label mappings with open(f"{model_path}/label2id.json") as f: label2id = json.load(f) with open(f"{model_path}/id2label.json") as f: id2label = {int(k): v for k, v in json.load(f).items()} # Init and load model num_labels = len(label2id) model = BERT_BiLSTM_CRF(base_model, num_labels) model.load_state_dict(torch.load(f"{model_path}/full_model.pth", map_location="cpu")) model.eval()