File size: 8,902 Bytes
aef0118
ca6eb6e
aef0118
aa9f0d3
aef0118
598ac39
aef0118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7832a25
ca6eb6e
 
 
 
 
 
 
 
 
 
 
 
 
80dc20b
 
 
e597fdc
aa9f0d3
 
 
 
 
 
 
 
ca6eb6e
 
e597fdc
ca6eb6e
 
 
 
 
 
aef0118
ca6eb6e
 
 
 
aef0118
ca6eb6e
 
 
837263f
 
 
ca6eb6e
bfc4d6a
aef0118
 
bfc4d6a
aef0118
 
 
 
 
 
 
 
 
 
ca6eb6e
aef0118
 
 
bfc4d6a
 
ca6eb6e
 
598ac39
 
 
 
 
80dc20b
 
598ac39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e597fdc
 
aa9f0d3
 
e597fdc
aa9f0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e597fdc
aa9f0d3
e597fdc
 
 
 
 
aa9f0d3
e597fdc
 
aa9f0d3
e597fdc
aa9f0d3
e597fdc
 
 
 
aa9f0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e597fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9f0d3
 
 
 
 
 
 
 
 
 
 
 
e597fdc
aa9f0d3
 
 
 
 
e597fdc
aa9f0d3
e597fdc
 
 
aa9f0d3
e597fdc
 
 
 
 
 
 
aa9f0d3
 
 
 
 
e597fdc
aa9f0d3
e597fdc
aa9f0d3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import json
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import openai

SYSTEM_PROMPT = (
    "You are an advanced AI model specialized in extracting aspects and determining their sentiment polarity from customer reviews.\n\n"
    "Instructions:\n"
    "1. Extract only the aspects (nouns) mentioned in the review.\n"
    "2. Assign a sentiment to each aspect: \"positive\", \"negative\", or \"neutral\".\n"
    "3. Return aspects in the same language as they appear.\n"
    "4. An aspect must be a noun that refers to a specific item or service the user described.\n"
    "5. Ignore adjectives, general ideas, and vague topics.\n"
    "6. Do NOT translate, explain, or add extra text.\n"
    "7. The output must be just a valid JSON list with 'aspect' and 'sentiment'. Start with `[` and stop at `]`.\n"
    "8. Do NOT output the instructions, review, or any text β€” only one output JSON list.\n"
    "9. Just one output and one review."
)


MODEL_OPTIONS = {
    "Araberta": {
        "base": "asmashayea/absa-araberta",
        "adapter": "asmashayea/absa-araberta"
    },
    "mT5": {
        "base": "google/mt5-base",
        "adapter": "asmashayea/mt4-absa"
    },
    "mBART": {
        "base": "facebook/mbart-large-50-many-to-many-mmt",
        "adapter": "asmashayea/mbart-absa"
    },
    "GPT3.5": {"base": "openai/gpt-3.5-turbo",
               "model_id": "ft:gpt-3.5-turbo-0125:asma:gpt-3-5-turbo-absa:Bb6gmwkE"},
    "GPT4o": {"base": "openai/gpt-4o",
              "model_id": "ft:gpt-4o-mini-2024-07-18:asma:gpt4-finetune-absa:BazoEjnp"},
    "ALLaM": {
        "base": "ALLaM-AI/ALLaM-7B-Instruct-preview",
        "adapter": "asmashayea/allam-absa"
    },
    "DeepSeek": {
        "base": "deepseek-ai/deepseek-llm-7b-chat",
        "adapter": "asmashayea/deepseek-absa"
    }
}


cached_models = {}

# βœ… Reusable for both mT5 + mBART
def load_mt5_bart(model_key):
    base_id = MODEL_OPTIONS[model_key]["base"]
    adapter_id = MODEL_OPTIONS[model_key]["adapter"]

    tokenizer = AutoTokenizer.from_pretrained(adapter_id)
    base_model = AutoModelForSeq2SeqLM.from_pretrained(base_id)
    peft_model = PeftModel.from_pretrained(base_model, adapter_id)
    peft_model.eval()

    cached_models[model_key] = (tokenizer, peft_model)
    return tokenizer, peft_model

def infer_t5_bart(text, model_choice):

    tokenizer, peft_model = load_mt5_bart(model_choice)
    prompt = SYSTEM_PROMPT + f"\n\nReview: {text}"
    inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(peft_model.device)

    with torch.no_grad():
        outputs = peft_model.generate(
            **inputs,
            max_new_tokens=256,
            num_beams=4,
            do_sample=False,
            temperature=0.0,
            early_stopping=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    decoded = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
    decoded = decoded.replace('<extra_id_0>', '').replace('</s>', '').strip()

    try:
        return json.loads(decoded)
    except json.JSONDecodeError:
        return {"raw_output": decoded, "error": "Invalid JSON"}



OPENAI_API_KEY = "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"
openai.api_key = OPENAI_API_KEY

def infer_gpt_absa(text, model_key):
    MODEL_ID = MODEL_OPTIONS[model_key]["model_id"]
    try:
        response = openai.chat.completions.create(
            model=MODEL_ID,
            messages=[
                {
                    "role": "system",
                    "content": SYSTEM_PROMPT
                },
                {
                    "role": "user",
                    "content": text
                }
            ],
            temperature=0
        )
        decoded = response.choices[0].message.content.strip()
        return json.loads(decoded)
    except Exception as e:
        return {"error": str(e)}



def infer_allam(review_text):
    tokenizer, model = cached_models.get("ALLaM") or load_allam()

    prompt = tokenizer.apply_chat_template(
        [
            {"role": "system", "content": SYSTEM_PROMPT},
            {"role": "user", "content": review_text}
        ],
        tokenize=False
    )

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=128,
            do_sample=False,
            temperature=0.0,
            pad_token_id=tokenizer.eos_token_id
        )

    decoded = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True).strip()
    try:
        parsed = json.loads(decoded)
        return parsed
    except Exception as e:
        return {"error": str(e), "raw": decoded}


def load_allam():
    base_model = AutoModelForCausalLM.from_pretrained(
        MODEL_OPTIONS["ALLaM"]["base"],
        device_map="auto",
        torch_dtype=torch.float16,
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_OPTIONS["ALLaM"]["adapter"],
        trust_remote_code=True
    )
    model = PeftModel.from_pretrained(base_model, MODEL_OPTIONS["ALLaM"]["adapter"])

    cached_models["ALLaM"] = (tokenizer, model)
    return tokenizer, model





def load_allam():
    base = AutoModelForCausalLM.from_pretrained(
        MODEL_OPTIONS["ALLaM"]["base"],
        torch_dtype=torch.float16,
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_OPTIONS["ALLaM"]["adapter"], trust_remote_code=True
    )
    model = PeftModel.from_pretrained(base, MODEL_OPTIONS["ALLaM"]["adapter"])
    cached_models["ALLaM"] = (tokenizer, model)
    return tokenizer, model

def infer_allam(review):
    if "ALLaM" not in cached_models:
        tokenizer, model = load_allam()
    else:
        tokenizer, model = cached_models["ALLaM"]

    prompt = tokenizer.apply_chat_template([
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": review}
    ], tokenize=False)

    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    with torch.no_grad():
        output = model.generate(**inputs, max_new_tokens=256)
    decoded = tokenizer.decode(output[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)

    try:
        return json.loads(decoded)
    except:
        return decoded




def build_deepseek_prompt(review_text, output=""):
    return f"""<|system|>
You are an advanced AI model specialized in extracting aspects and determining their sentiment polarity from customer reviews.


Instructions:
1. Extract only the aspects (nouns) mentioned in the review.
2. Assign a sentiment to each aspect: "positive", "negative", or "neutral".
3. Return aspects in the same language as they appear.
4. An aspect must be a noun that refers to a specific item or service the user described.
5. Ignore adjectives, general ideas, and vague topics.
6. Do NOT translate, explain, or add extra text.
7. The output must be just a valid JSON list with 'aspect' and 'sentiment'. Start with `[` and stop at `]`.
8. Do NOT output the instructions, review, or any text β€” only one output JSON list.
9. Just one output and one review.
<|user|>
{review_text}
<|assistant|>
{output}"""  # βœ… include the output here


def load_deepseek():
    base = AutoModelForCausalLM.from_pretrained(
        MODEL_OPTIONS["DeepSeek"]["base"],
        torch_dtype=torch.float16,
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_OPTIONS["DeepSeek"]["adapter"], trust_remote_code=True
    )
    model = PeftModel.from_pretrained(base, MODEL_OPTIONS["DeepSeek"]["adapter"])
    cached_models["DeepSeek"] = (tokenizer, model)
    return tokenizer, model

def infer_deepseek(review):
    if "DeepSeek" not in cached_models:
        tokenizer, model = load_deepseek()
    else:
        tokenizer, model = cached_models["DeepSeek"]

    prompt = build_deepseek_prompt(review)
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(model.device)

    with torch.no_grad():
        output = model.generate(
            **inputs,
            max_new_tokens=128,
            do_sample=False,
            temperature=0.0,
            pad_token_id=tokenizer.eos_token_id
        )

    decoded = tokenizer.decode(
        output[0][inputs["input_ids"].shape[1]:],
        skip_special_tokens=True
    ).strip()

    try:
        return json.loads(decoded)
    except Exception as e:
        print(f"❌ DeepSeek JSON parse error: {e}")
        return decoded