Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torchcrf import CRF | |
class BERT_BiLSTM_CRF(nn.Module): | |
def __init__(self, base_model, config, dropout_rate=0.2, rnn_dim=256): | |
super().__init__() | |
self.bert = base_model | |
self.label2id = config.label2id # <-- pulled from config | |
self.id2label = config.id2label | |
self.num_labels = config.num_labels | |
self.bilstm = nn.LSTM( | |
self.bert.config.hidden_size, | |
rnn_dim, | |
num_layers=2, | |
batch_first=True, | |
bidirectional=True, | |
dropout=0.2 | |
) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.classifier = nn.Linear(rnn_dim * 2, self.num_labels) | |
self.crf = CRF(self.num_labels, batch_first=True) | |
def forward(self, input_ids, attention_mask, token_type_ids=None, labels=None): | |
outputs = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids | |
) | |
lstm_out, _ = self.bilstm(self.dropout(outputs.last_hidden_state)) | |
emissions = self.classifier(lstm_out) | |
mask = attention_mask.bool() | |
if labels is not None: | |
safe_labels = labels.clone() | |
safe_labels[labels == -100] = self.label2id['O'] | |
loss = -self.crf(emissions, safe_labels, mask=mask, reduction='mean') | |
return {'loss': loss, 'logits': emissions} | |
else: | |
decoded = self.crf.decode(emissions, mask=mask) | |
max_len = input_ids.shape[1] | |
padded_decoded = [seq + [0] * (max_len - len(seq)) for seq in decoded] | |
logits = torch.tensor(padded_decoded, device=input_ids.device) | |
return {'logits': logits} | |