asmashayea commited on
Commit
a700ccf
·
1 Parent(s): e13680c
Files changed (2) hide show
  1. app.py +1 -1
  2. inference.py +2 -2
app.py CHANGED
@@ -15,7 +15,7 @@ demo = gr.Interface(
15
  ],
16
  outputs=gr.Textbox(label="Extracted Aspect-Sentiment-Opinion Triplets"),
17
  title="Arabic ABSA (Aspect-Based Sentiment Analysis)",
18
- description="Choose a model (mT5, mBART, GPT) to extract aspects, opinions, and sentiment using LoRA adapters"
19
  )
20
 
21
  if __name__ == "__main__":
 
15
  ],
16
  outputs=gr.Textbox(label="Extracted Aspect-Sentiment-Opinion Triplets"),
17
  title="Arabic ABSA (Aspect-Based Sentiment Analysis)",
18
+ description="Choose a model (Araberta, mT5, mBART, GPT) to extract aspects, opinions, and sentiment using LoRA adapters"
19
  )
20
 
21
  if __name__ == "__main__":
inference.py CHANGED
@@ -6,7 +6,7 @@ from transformers import AutoTokenizer, AutoModelForTokenClassification
6
 
7
  # Define supported models and their adapter IDs
8
  MODEL_OPTIONS = {
9
- "araberta": {
10
  "base": "asmashayea/absa-araberta",
11
  "adapter": "asmashayea/absa-araberta"
12
  },
@@ -56,7 +56,7 @@ def predict_absa(text, model_choice):
56
  elif model_choice == 'mBART':
57
  decoded = infer_mBart_prompt(text, tokenizer, model)
58
 
59
- elif model_choice == 'bert':
60
 
61
  model = AutoModelForTokenClassification.from_pretrained("asmashayea/absa-araberta")
62
  tokenizer = AutoTokenizer.from_pretrained("asmashayea/absa-araberta")
 
6
 
7
  # Define supported models and their adapter IDs
8
  MODEL_OPTIONS = {
9
+ "Araberta": {
10
  "base": "asmashayea/absa-araberta",
11
  "adapter": "asmashayea/absa-araberta"
12
  },
 
56
  elif model_choice == 'mBART':
57
  decoded = infer_mBart_prompt(text, tokenizer, model)
58
 
59
+ elif model_choice == 'Araberta':
60
 
61
  model = AutoModelForTokenClassification.from_pretrained("asmashayea/absa-araberta")
62
  tokenizer = AutoTokenizer.from_pretrained("asmashayea/absa-araberta")