File size: 11,089 Bytes
ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 ad32177 40bbb95 06e1ad9 40bbb95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import gradio as gr
import os
from transformers import (
GPT2LMHeadModel, GPT2Tokenizer,
T5ForConditionalGeneration, T5Tokenizer,
AutoTokenizer, AutoModelForCausalLM
)
import torch
import json
from fastapi import FastAPI, HTTPException, Depends, Header
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
import uvicorn
from pydantic import BaseModel
from typing import Optional
# Configuration for multiple models
MODEL_CONFIGS = {
"gpt2": {
"type": "causal",
"model_class": GPT2LMHeadModel,
"tokenizer_class": GPT2Tokenizer,
"description": "Original GPT-2, good for creative writing",
"size": "117M"
},
"distilgpt2": {
"type": "causal",
"model_class": AutoModelForCausalLM,
"tokenizer_class": AutoTokenizer,
"description": "Smaller, faster GPT-2",
"size": "82M"
},
"google/flan-t5-small": {
"type": "seq2seq",
"model_class": T5ForConditionalGeneration,
"tokenizer_class": T5Tokenizer,
"description": "Instruction-following T5 model",
"size": "80M"
},
"microsoft/DialoGPT-small": {
"type": "causal",
"model_class": AutoModelForCausalLM,
"tokenizer_class": AutoTokenizer,
"description": "Conversational AI model",
"size": "117M"
}
}
# Environment variables
HF_TOKEN = os.getenv("HF_TOKEN")
API_KEY = os.getenv("API_KEY")
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
# Global state for caching
loaded_model_name = None
model = None
tokenizer = None
# Pydantic models for API
class GenerateRequest(BaseModel):
prompt: str
model_name: str = "gpt2"
max_length: int = 100
temperature: float = 0.7
top_p: float = 0.9
top_k: int = 50
class GenerateResponse(BaseModel):
generated_text: str
model_used: str
status: str = "success"
# Security
security = HTTPBearer(auto_error=False)
def load_model_and_tokenizer(model_name):
global loaded_model_name, model, tokenizer
if model_name not in MODEL_CONFIGS:
raise ValueError(f"Model {model_name} not supported. Available models: {list(MODEL_CONFIGS.keys())}")
if model_name == loaded_model_name and model is not None and tokenizer is not None:
return model, tokenizer
try:
config = MODEL_CONFIGS[model_name]
# Load tokenizer and model
if HF_TOKEN:
tokenizer = config["tokenizer_class"].from_pretrained(model_name, use_auth_token=HF_TOKEN)
model = config["model_class"].from_pretrained(model_name, use_auth_token=HF_TOKEN)
else:
tokenizer = config["tokenizer_class"].from_pretrained(model_name)
model = config["model_class"].from_pretrained(model_name)
# Set pad token for causal models if missing
if config["type"] == "causal" and tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
loaded_model_name = model_name
return model, tokenizer
except Exception as e:
raise RuntimeError(f"Failed to load model {model_name}: {str(e)}")
def authenticate_api_key(credentials: Optional[HTTPAuthorizationCredentials] = Depends(security)):
if API_KEY:
if not credentials or credentials.credentials != API_KEY:
raise HTTPException(status_code=401, detail="Invalid or missing API key")
return True
def generate_text_core(prompt, model_name, max_length, temperature, top_p, top_k):
"""Core text generation function"""
try:
config = MODEL_CONFIGS[model_name]
model, tokenizer = load_model_and_tokenizer(model_name)
if config["type"] == "causal":
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=min(max_length + inputs.shape[1], 512),
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=1
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text[len(prompt):].strip()
elif config["type"] == "seq2seq":
task_prompt = f"Complete this text: {prompt}" if "flan-t5" in model_name.lower() else prompt
inputs = tokenizer(task_prompt, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=True,
num_return_sequences=1
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
raise RuntimeError(f"Error generating text: {str(e)}")
# Gradio interface function
def generate_text_gradio(prompt, model_name, max_length, temperature, top_p, top_k, api_key=""):
if API_KEY and api_key != API_KEY:
return "Error: Invalid API key"
try:
return generate_text_core(prompt, model_name, max_length, temperature, top_p, top_k)
except Exception as e:
return f"Error: {str(e)}"
# Create FastAPI app
app = FastAPI(title="Multi-Model Text Generation API", version="1.0.0")
# API Routes
@app.post("/generate", response_model=GenerateResponse)
async def generate_text_api(
request: GenerateRequest,
authenticated: bool = Depends(authenticate_api_key)
):
try:
generated_text = generate_text_core(
request.prompt,
request.model_name,
request.max_length,
request.temperature,
request.top_p,
request.top_k
)
return GenerateResponse(
generated_text=generated_text,
model_used=request.model_name
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/models")
async def list_models():
return {
"models": [
{
"name": name,
"description": config["description"],
"size": config["size"],
"type": config["type"]
}
for name, config in MODEL_CONFIGS.items()
]
}
@app.get("/health")
async def health_check():
return {"status": "healthy", "loaded_model": loaded_model_name}
# Create Gradio interface
with gr.Blocks(title="Multi-Model Text Generation Server") as demo:
gr.Markdown("# Multi-Model Text Generation Server")
gr.Markdown("Choose a model from the dropdown, enter a text prompt, and generate text.")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
label="Model",
choices=list(MODEL_CONFIGS.keys()),
value="gpt2",
interactive=True
)
# Show model info
model_info = gr.Markdown("**Model Info:** Original GPT-2, good for creative writing (117M)")
def update_model_info(model_name):
config = MODEL_CONFIGS[model_name]
return f"**Model Info:** {config['description']} ({config['size']})"
model_selector.change(update_model_info, inputs=model_selector, outputs=model_info)
prompt_input = gr.Textbox(
label="Text Prompt",
placeholder="Enter the text prompt here...",
lines=4
)
max_length_slider = gr.Slider(
10, 200, 100, 10,
label="Max Generation Length"
)
temperature_slider = gr.Slider(
0.1, 2.0, 0.7, 0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
0.1, 1.0, 0.9, 0.05,
label="Top-p (nucleus sampling)"
)
top_k_slider = gr.Slider(
1, 100, 50, 1,
label="Top-k sampling"
)
if API_KEY:
api_key_input = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter API Key"
)
else:
api_key_input = gr.Textbox(value="", visible=False)
generate_btn = gr.Button("Generate Text", variant="primary")
with gr.Column():
output_textbox = gr.Textbox(
label="Generated Text",
lines=10,
placeholder="Generated text will appear here..."
)
generate_btn.click(
fn=generate_text_gradio,
inputs=[prompt_input, model_selector, max_length_slider, temperature_slider, top_p_slider, top_k_slider, api_key_input],
outputs=output_textbox
)
gr.Examples(
examples=[
["Once upon a time in a distant galaxy,"],
["The future of artificial intelligence is"],
["In the heart of the ancient forest,"],
["The detective walked into the room and noticed"],
],
inputs=prompt_input
)
# API documentation
with gr.Accordion("API Documentation", open=False):
gr.Markdown("""
## REST API Endpoints
### POST /generate
Generate text using the specified model.
**Request Body:**
```json
{
"prompt": "Your text prompt here",
"model_name": "gpt2",
"max_length": 100,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 50
}
```
**Response:**
```json
{
"generated_text": "Generated text...",
"model_used": "gpt2",
"status": "success"
}
```
### GET /models
List all available models.
### GET /health
Check server health and loaded model status.
**Example cURL:**
```bash
curl -X POST "http://localhost:7860/generate" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{"prompt": "Once upon a time", "model_name": "gpt2"}'
```
""")
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
auth_config = ("admin", ADMIN_PASSWORD) if ADMIN_PASSWORD else None
# Launch with both FastAPI and Gradio
demo.launch(
auth=auth_config,
server_name="0.0.0.0",
server_port=7860,
ssr_mode=False,
share=False
) |