File size: 6,039 Bytes
ad32177 cef31a4 ad32177 cef31a4 ad32177 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e 40bbb95 8511f5e cef31a4 8511f5e 40bbb95 8511f5e 40bbb95 cef31a4 8511f5e ad32177 40bbb95 8511f5e 40bbb95 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e 40bbb95 8511f5e cef31a4 8511f5e cef31a4 8511f5e 40bbb95 8511f5e cef31a4 8511f5e 40bbb95 ad32177 8511f5e 5b97012 ad32177 cef31a4 8511f5e ad32177 8511f5e ad32177 8511f5e ad32177 8511f5e cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e 5b97012 ad32177 cef31a4 8511f5e cef31a4 8511f5e cef31a4 8511f5e ad32177 8511f5e ad32177 8511f5e 5b97012 8511f5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import gradio as gr
import os
import time
from collections import defaultdict
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
# Load secrets from environment
HF_TOKEN = os.getenv("HF_TOKEN")
API_KEY = os.getenv("API_KEY")
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
print("π Security Status:")
print(f" HF_TOKEN: {'β
Set' if HF_TOKEN else 'β Not set'}")
print(f" API_KEY: {'β
Set' if API_KEY else 'β Not set'}")
print(f" ADMIN_PASSWORD: {'β
Set' if ADMIN_PASSWORD else 'β Not set'}")
# Simple rate limiting
request_counts = defaultdict(list)
# Load model
model_name = "gpt2"
print("π¦ Loading model...")
try:
if HF_TOKEN:
tokenizer = GPT2Tokenizer.from_pretrained(model_name, token=HF_TOKEN)
model = GPT2LMHeadModel.from_pretrained(model_name, token=HF_TOKEN)
print("β
Model loaded with HF token")
else:
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
print("β
Model loaded without token")
tokenizer.pad_token = tokenizer.eos_token
print("β
Model ready!")
except Exception as e:
print(f"β Model loading failed: {e}")
raise
def check_api_key(provided_key):
"""Simple API key validation with rate limiting"""
if not API_KEY:
return True, "Public access"
if not provided_key or provided_key != API_KEY:
return False, "Invalid or missing API key"
# Simple rate limiting (100 requests per hour)
now = time.time()
hour_ago = now - 3600
# Clean old requests
request_counts[provided_key] = [
t for t in request_counts[provided_key] if t > hour_ago
]
if len(request_counts[provided_key]) >= 100:
return False, "Rate limit exceeded (100/hour)"
request_counts[provided_key].append(now)
return True, f"Authenticated ({len(request_counts[provided_key])}/100)"
def generate_text(prompt, max_length, temperature, top_p, top_k, api_key):
"""Generate text with GPT-2"""
# API key check
valid, msg = check_api_key(api_key)
if not valid:
return f"π Error: {msg}"
# Input validation
if not prompt.strip():
return "β Please enter a prompt"
if len(prompt) > 1000:
return "β Prompt too long (max 1000 chars)"
try:
print(f"π {msg}")
print(f"π Generating: {prompt[:50]}...")
# Encode input
inputs = tokenizer.encode(
prompt,
return_tensors="pt",
max_length=400,
truncation=True
)
# Generate
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=min(inputs.shape[1] + max_length, 500),
temperature=max(0.1, min(2.0, temperature)),
top_p=max(0.1, min(1.0, top_p)),
top_k=max(1, min(100, top_k)),
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
no_repeat_ngram_size=2
)
# Decode result
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
result = generated[len(prompt):].strip()
print(f"β
Generated {len(result)} characters")
return result if result else "β No text generated"
except Exception as e:
error = f"β Generation failed: {str(e)}"
print(error)
return error
# Create simple interface - NO COMPLEX THEMES OR CSS
demo = gr.Blocks(title="GPT-2 Text Generator")
with demo:
# Simple header
gr.Markdown("# π€ GPT-2 Text Generator")
# Security info
if API_KEY:
gr.Markdown("π **API Authentication Required**")
else:
gr.Markdown("π **Public Access Mode**")
with gr.Row():
with gr.Column():
# Input section
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your text prompt...",
lines=3
)
# API key input (only if needed)
if API_KEY:
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter API key..."
)
else:
api_key = gr.Textbox(value="", visible=False)
# Parameters
max_length = gr.Slider(
10, 200, 100,
label="Max Length"
)
temperature = gr.Slider(
0.1, 2.0, 0.7,
label="Temperature"
)
top_p = gr.Slider(
0.1, 1.0, 0.9,
label="Top-p"
)
top_k = gr.Slider(
1, 100, 50,
label="Top-k"
)
# Generate button
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column():
# Output
output = gr.Textbox(
label="Generated Text",
lines=10,
placeholder="Generated text will appear here..."
)
# Examples
gr.Examples([
["Once upon a time"],
["The future of AI is"],
["In a world where technology"],
], inputs=prompt)
# Connect function
generate_btn.click(
generate_text,
inputs=[prompt, max_length, temperature, top_p, top_k, api_key],
outputs=output
)
# Simple launch - MINIMAL CONFIGURATION
if __name__ == "__main__":
auth = ("admin", ADMIN_PASSWORD) if ADMIN_PASSWORD else None
if auth:
print("π Admin auth enabled")
print("π Starting server...")
# MINIMAL launch config that works on HF Spaces
demo.launch(auth=auth)
print("β
Server running!") |