Spaces:
Runtime error
Runtime error
sonyps1928
commited on
Commit
Β·
1b3fa51
1
Parent(s):
adb694f
update app16
Browse files- app.py +362 -159
- requirements.txt +6 -4
app.py
CHANGED
|
@@ -1,173 +1,376 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
)
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# Model loading
|
| 24 |
-
# ----------------------------
|
| 25 |
-
@st.cache_resource
|
| 26 |
-
def load_model():
|
| 27 |
-
"""Load and cache the GPT-2 model"""
|
| 28 |
-
with st.spinner("Loading GPT-2 model..."):
|
| 29 |
-
try:
|
| 30 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 31 |
-
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
| 32 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 33 |
-
return tokenizer, model
|
| 34 |
-
except Exception as e:
|
| 35 |
-
st.error(f"Error loading model: {e}")
|
| 36 |
-
return None, None
|
| 37 |
-
|
| 38 |
-
# ----------------------------
|
| 39 |
-
# Text generation
|
| 40 |
-
# ----------------------------
|
| 41 |
-
def generate_text(prompt, max_length, temperature, tokenizer, model):
|
| 42 |
-
"""Generate text using GPT-2"""
|
| 43 |
-
if not prompt:
|
| 44 |
-
return "Please enter a prompt"
|
| 45 |
-
|
| 46 |
-
if len(prompt) > 500:
|
| 47 |
-
return "Prompt too long (max 500 characters)"
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
# ----------------------------
|
| 72 |
# Authentication
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
if not check_auth():
|
| 97 |
-
return
|
| 98 |
-
|
| 99 |
-
tokenizer, model = load_model()
|
| 100 |
-
if tokenizer is None or model is None:
|
| 101 |
-
st.error("Failed to load model. Please check the logs.")
|
| 102 |
-
return
|
| 103 |
-
|
| 104 |
-
st.title("π€ GPT-2 Text Generator")
|
| 105 |
-
st.markdown("Generate text using GPT-2 language model")
|
| 106 |
-
|
| 107 |
-
# Security status
|
| 108 |
-
col1, col2, col3 = st.columns(3)
|
| 109 |
-
with col1:
|
| 110 |
-
st.success("π HF Token: Active" if HF_TOKEN else "π HF Token: Not set")
|
| 111 |
-
with col2:
|
| 112 |
-
st.success("π API Auth: Enabled" if API_KEY else "π API Auth: Disabled")
|
| 113 |
-
with col3:
|
| 114 |
-
st.success("π€ Admin Auth: Active" if ADMIN_PASSWORD else "π€ Admin Auth: Disabled")
|
| 115 |
-
|
| 116 |
-
# Input section
|
| 117 |
-
st.subheader("π Input")
|
| 118 |
-
col1, col2 = st.columns([2, 1])
|
| 119 |
-
|
| 120 |
-
with col1:
|
| 121 |
-
prompt = st.text_area(
|
| 122 |
-
"Enter your prompt:",
|
| 123 |
-
placeholder="Type your text here...",
|
| 124 |
-
height=100
|
| 125 |
-
)
|
| 126 |
-
api_key = ""
|
| 127 |
-
if API_KEY:
|
| 128 |
-
api_key = st.text_input("API Key:", type="password")
|
| 129 |
-
|
| 130 |
-
with col2:
|
| 131 |
-
st.subheader("βοΈ Settings")
|
| 132 |
-
max_length = st.slider("Max Length", 20, 200, 100, 10)
|
| 133 |
-
temperature = st.slider("Temperature", 0.1, 1.5, 0.7, 0.1)
|
| 134 |
-
generate_btn = st.button("π Generate Text", type="primary")
|
| 135 |
-
|
| 136 |
-
# API key validation
|
| 137 |
-
if API_KEY and generate_btn:
|
| 138 |
-
if not api_key or api_key != API_KEY:
|
| 139 |
-
st.error("π Invalid or missing API key")
|
| 140 |
-
return
|
| 141 |
-
|
| 142 |
-
# Generate text
|
| 143 |
-
if generate_btn and prompt:
|
| 144 |
-
with st.spinner("Generating text..."):
|
| 145 |
-
result = generate_text(prompt, max_length, temperature, tokenizer, model)
|
| 146 |
-
st.subheader("π Generated Text")
|
| 147 |
-
st.text_area("Output:", value=result, height=200)
|
| 148 |
-
st.code(result)
|
| 149 |
-
elif generate_btn:
|
| 150 |
-
st.warning("Please enter a prompt")
|
| 151 |
-
|
| 152 |
-
# Example prompts
|
| 153 |
-
st.subheader("π‘ Example Prompts")
|
| 154 |
-
examples = [
|
| 155 |
-
"Once upon a time in a distant galaxy,",
|
| 156 |
-
"The future of artificial intelligence is",
|
| 157 |
-
"In the heart of the ancient forest,",
|
| 158 |
-
"The detective walked into the room and noticed"
|
| 159 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
if st.button(f"Use Example {i+1}", key=f"ex_{i}"):
|
| 165 |
-
st.session_state.example_prompt = example
|
| 166 |
-
st.experimental_rerun()
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import time
|
| 3 |
+
import random
|
| 4 |
+
from typing import Dict, Any, List, Optional
|
| 5 |
+
import uvicorn
|
| 6 |
+
from fastapi import FastAPI, HTTPException, Depends, Request
|
| 7 |
+
from fastapi.responses import JSONResponse
|
| 8 |
+
from fastapi.exception_handlers import http_exception_handler
|
| 9 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
+
from pydantic import BaseModel
|
| 12 |
+
import requests
|
| 13 |
+
import json
|
| 14 |
+
|
| 15 |
+
from config import config
|
| 16 |
+
|
| 17 |
+
# Configure logging
|
| 18 |
+
logging.basicConfig(level=getattr(logging, config.LOG_LEVEL))
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
# FastAPI app
|
| 22 |
+
app = FastAPI(
|
| 23 |
+
title="Advanced Gemini Proxy",
|
| 24 |
+
description="OpenAI-compatible proxy for Google Gemini API",
|
| 25 |
+
version="1.0.0"
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# CORS middleware
|
| 29 |
+
app.add_middleware(
|
| 30 |
+
CORSMiddleware,
|
| 31 |
+
allow_origins=["*"],
|
| 32 |
+
allow_credentials=True,
|
| 33 |
+
allow_methods=["*"],
|
| 34 |
+
allow_headers=["*"],
|
| 35 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Custom exception handler
|
| 38 |
+
@app.exception_handler(HTTPException)
|
| 39 |
+
async def custom_http_exception_handler(request: Request, exc: HTTPException):
|
| 40 |
+
# If detail is already in OpenAI format, return as-is
|
| 41 |
+
if isinstance(exc.detail, dict) and "error" in exc.detail:
|
| 42 |
+
return JSONResponse(
|
| 43 |
+
status_code=exc.status_code,
|
| 44 |
+
content=exc.detail
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Otherwise, format as OpenAI error
|
| 48 |
+
error_response = {
|
| 49 |
+
"error": {
|
| 50 |
+
"message": str(exc.detail),
|
| 51 |
+
"type": "api_error",
|
| 52 |
+
"param": None,
|
| 53 |
+
"code": None
|
| 54 |
+
}
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
return JSONResponse(
|
| 58 |
+
status_code=exc.status_code,
|
| 59 |
+
content=error_response
|
| 60 |
+
)
|
| 61 |
|
| 62 |
+
# Security
|
| 63 |
+
security = HTTPBearer()
|
| 64 |
|
| 65 |
+
# Rate limiting storage (in-memory for simplicity)
|
| 66 |
+
rate_limit_storage: Dict[str, List[float]] = {}
|
| 67 |
|
| 68 |
+
# Pydantic models
|
| 69 |
+
class ChatMessage(BaseModel):
|
| 70 |
+
role: str
|
| 71 |
+
content: str
|
| 72 |
+
|
| 73 |
+
class ChatCompletionRequest(BaseModel):
|
| 74 |
+
model: str
|
| 75 |
+
messages: List[ChatMessage]
|
| 76 |
+
temperature: Optional[float] = 1.0
|
| 77 |
+
max_tokens: Optional[int] = None
|
| 78 |
+
stream: Optional[bool] = False
|
| 79 |
+
|
| 80 |
+
class Choice(BaseModel):
|
| 81 |
+
index: int
|
| 82 |
+
message: Dict[str, str]
|
| 83 |
+
finish_reason: str
|
| 84 |
+
|
| 85 |
+
class Usage(BaseModel):
|
| 86 |
+
prompt_tokens: int
|
| 87 |
+
completion_tokens: int
|
| 88 |
+
total_tokens: int
|
| 89 |
+
|
| 90 |
+
class ChatCompletionResponse(BaseModel):
|
| 91 |
+
id: str
|
| 92 |
+
object: str = "chat.completion"
|
| 93 |
+
created: int
|
| 94 |
+
model: str
|
| 95 |
+
choices: List[Choice]
|
| 96 |
+
usage: Usage
|
| 97 |
|
|
|
|
| 98 |
# Authentication
|
| 99 |
+
async def verify_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
| 100 |
+
if credentials.credentials != config.MASTER_API_KEY:
|
| 101 |
+
error_response = {
|
| 102 |
+
"error": {
|
| 103 |
+
"message": "Invalid API key provided",
|
| 104 |
+
"type": "invalid_request_error",
|
| 105 |
+
"param": None,
|
| 106 |
+
"code": "invalid_api_key"
|
| 107 |
+
}
|
| 108 |
+
}
|
| 109 |
+
raise HTTPException(status_code=401, detail=error_response)
|
| 110 |
+
return credentials.credentials
|
| 111 |
+
|
| 112 |
+
# Rate limiting
|
| 113 |
+
def check_rate_limit(client_ip: str) -> tuple[bool, int]:
|
| 114 |
+
now = time.time()
|
| 115 |
+
if client_ip not in rate_limit_storage:
|
| 116 |
+
rate_limit_storage[client_ip] = []
|
| 117 |
+
|
| 118 |
+
# Clean old entries
|
| 119 |
+
rate_limit_storage[client_ip] = [
|
| 120 |
+
timestamp for timestamp in rate_limit_storage[client_ip]
|
| 121 |
+
if now - timestamp < 60
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
]
|
| 123 |
+
|
| 124 |
+
current_count = len(rate_limit_storage[client_ip])
|
| 125 |
+
|
| 126 |
+
# Check limit
|
| 127 |
+
if current_count >= config.MAX_REQUESTS_PER_MINUTE:
|
| 128 |
+
# Calculate reset time
|
| 129 |
+
oldest_request = min(rate_limit_storage[client_ip])
|
| 130 |
+
reset_time = int(oldest_request + 60)
|
| 131 |
+
return False, reset_time
|
| 132 |
+
|
| 133 |
+
# Add current request
|
| 134 |
+
rate_limit_storage[client_ip].append(now)
|
| 135 |
+
return True, 0
|
| 136 |
+
|
| 137 |
+
# Gemini API interaction
|
| 138 |
+
def get_random_api_key() -> str:
|
| 139 |
+
return random.choice(config.GEMINI_API_KEYS)
|
| 140 |
+
|
| 141 |
+
def convert_to_gemini_format(messages: List[ChatMessage]) -> List[Dict[str, Any]]:
|
| 142 |
+
gemini_messages = []
|
| 143 |
+
for msg in messages:
|
| 144 |
+
if msg.role == "system":
|
| 145 |
+
# Handle system messages by converting to user message with instruction
|
| 146 |
+
gemini_messages.append({
|
| 147 |
+
"role": "user",
|
| 148 |
+
"parts": [{"text": f"System instruction: {msg.content}"}]
|
| 149 |
+
})
|
| 150 |
+
else:
|
| 151 |
+
role = "user" if msg.role == "user" else "model"
|
| 152 |
+
gemini_messages.append({
|
| 153 |
+
"role": role,
|
| 154 |
+
"parts": [{"text": msg.content}]
|
| 155 |
+
})
|
| 156 |
+
return gemini_messages
|
| 157 |
+
|
| 158 |
+
def estimate_tokens(text: str) -> int:
|
| 159 |
+
"""Simple token estimation - roughly 1 token per 4 characters"""
|
| 160 |
+
return max(1, len(text) // 4)
|
| 161 |
+
|
| 162 |
+
def call_gemini_api(messages: List[ChatMessage], model: str, temperature: float, max_tokens: Optional[int]) -> Dict[str, Any]:
|
| 163 |
+
api_key = get_random_api_key()
|
| 164 |
+
|
| 165 |
+
# Convert model name
|
| 166 |
+
if "gpt-4" in model.lower():
|
| 167 |
+
gemini_model = "gemini-1.5-pro-latest"
|
| 168 |
+
elif "gpt-3.5" in model.lower():
|
| 169 |
+
gemini_model = "gemini-1.5-flash-latest"
|
| 170 |
+
else:
|
| 171 |
+
gemini_model = "gemini-1.5-flash-latest" # Default fallback
|
| 172 |
+
|
| 173 |
+
url = f"https://generativelanguage.googleapis.com/v1beta/models/{gemini_model}:generateContent"
|
| 174 |
+
|
| 175 |
+
# Convert messages
|
| 176 |
+
gemini_messages = convert_to_gemini_format(messages)
|
| 177 |
+
|
| 178 |
+
payload = {
|
| 179 |
+
"contents": gemini_messages,
|
| 180 |
+
"generationConfig": {
|
| 181 |
+
"temperature": max(0.0, min(2.0, temperature)), # Clamp temperature
|
| 182 |
+
},
|
| 183 |
+
"safetySettings": [
|
| 184 |
+
{
|
| 185 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
| 186 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
| 190 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 194 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 198 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 199 |
+
}
|
| 200 |
+
]
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
if max_tokens and max_tokens > 0:
|
| 204 |
+
payload["generationConfig"]["maxOutputTokens"] = min(max_tokens, 8192) # Gemini limit
|
| 205 |
+
|
| 206 |
+
headers = {
|
| 207 |
+
"Content-Type": "application/json",
|
| 208 |
+
"x-goog-api-key": api_key
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
try:
|
| 212 |
+
response = requests.post(url, json=payload, headers=headers, timeout=30)
|
| 213 |
+
|
| 214 |
+
if response.status_code != 200:
|
| 215 |
+
logger.error(f"Gemini API error: {response.status_code} - {response.text}")
|
| 216 |
+
error_response = {
|
| 217 |
+
"error": {
|
| 218 |
+
"message": f"Gemini API error: {response.text}",
|
| 219 |
+
"type": "api_error",
|
| 220 |
+
"param": None,
|
| 221 |
+
"code": "gemini_api_error"
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
raise HTTPException(status_code=response.status_code, detail=error_response)
|
| 225 |
+
|
| 226 |
+
return response.json()
|
| 227 |
+
|
| 228 |
+
except requests.exceptions.Timeout:
|
| 229 |
+
raise HTTPException(status_code=408, detail="Request timeout")
|
| 230 |
+
except requests.exceptions.RequestException as e:
|
| 231 |
+
logger.error(f"Request error: {str(e)}")
|
| 232 |
+
raise HTTPException(status_code=500, detail="Failed to connect to Gemini API")
|
| 233 |
+
|
| 234 |
+
# Routes
|
| 235 |
+
@app.get("/")
|
| 236 |
+
async def root():
|
| 237 |
+
return {"message": "Advanced Gemini Proxy is running!", "version": "1.0.0"}
|
| 238 |
|
| 239 |
+
@app.get("/health")
|
| 240 |
+
async def health_check():
|
| 241 |
+
return {"status": "healthy", "timestamp": time.time()}
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
+
@app.get("/v1/models")
|
| 244 |
+
async def list_models(api_key: str = Depends(verify_api_key)):
|
| 245 |
+
return {
|
| 246 |
+
"object": "list",
|
| 247 |
+
"data": [
|
| 248 |
+
{
|
| 249 |
+
"id": "gpt-3.5-turbo",
|
| 250 |
+
"object": "model",
|
| 251 |
+
"created": int(time.time()),
|
| 252 |
+
"owned_by": "gemini-proxy"
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"id": "gpt-4",
|
| 256 |
+
"object": "model",
|
| 257 |
+
"created": int(time.time()),
|
| 258 |
+
"owned_by": "gemini-proxy"
|
| 259 |
+
}
|
| 260 |
+
]
|
| 261 |
+
}
|
| 262 |
|
| 263 |
+
@app.post("/v1/chat/completions")
|
| 264 |
+
async def chat_completions(
|
| 265 |
+
request: ChatCompletionRequest,
|
| 266 |
+
client_request: Request,
|
| 267 |
+
api_key: str = Depends(verify_api_key)
|
| 268 |
+
):
|
| 269 |
+
# Rate limiting
|
| 270 |
+
client_ip = client_request.client.host
|
| 271 |
+
allowed, reset_time = check_rate_limit(client_ip)
|
| 272 |
+
if not allowed:
|
| 273 |
+
error_response = {
|
| 274 |
+
"error": {
|
| 275 |
+
"message": "Rate limit reached for requests",
|
| 276 |
+
"type": "rate_limit_exceeded",
|
| 277 |
+
"param": None,
|
| 278 |
+
"code": "rate_limit_exceeded"
|
| 279 |
+
}
|
| 280 |
+
}
|
| 281 |
+
headers = {
|
| 282 |
+
"X-RateLimit-Limit": str(config.MAX_REQUESTS_PER_MINUTE),
|
| 283 |
+
"X-RateLimit-Remaining": "0",
|
| 284 |
+
"X-RateLimit-Reset": str(reset_time),
|
| 285 |
+
"Retry-After": str(60)
|
| 286 |
+
}
|
| 287 |
+
return JSONResponse(
|
| 288 |
+
status_code=429,
|
| 289 |
+
content=error_response,
|
| 290 |
+
headers=headers
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# Validate request
|
| 294 |
+
if not request.messages:
|
| 295 |
+
error_response = {
|
| 296 |
+
"error": {
|
| 297 |
+
"message": "Missing required parameter: 'messages'",
|
| 298 |
+
"type": "invalid_request_error",
|
| 299 |
+
"param": "messages",
|
| 300 |
+
"code": "missing_required_parameter"
|
| 301 |
+
}
|
| 302 |
+
}
|
| 303 |
+
raise HTTPException(status_code=400, detail=error_response)
|
| 304 |
+
|
| 305 |
+
try:
|
| 306 |
+
# Call Gemini API
|
| 307 |
+
gemini_response = call_gemini_api(
|
| 308 |
+
request.messages,
|
| 309 |
+
request.model,
|
| 310 |
+
request.temperature,
|
| 311 |
+
request.max_tokens
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
# Extract response text
|
| 315 |
+
if "candidates" not in gemini_response or not gemini_response["candidates"]:
|
| 316 |
+
# Check for blocked content
|
| 317 |
+
if "promptFeedback" in gemini_response and "blockReason" in gemini_response["promptFeedback"]:
|
| 318 |
+
block_reason = gemini_response["promptFeedback"]["blockReason"]
|
| 319 |
+
raise HTTPException(status_code=400, detail=f"Content blocked: {block_reason}")
|
| 320 |
+
raise HTTPException(status_code=500, detail="No response from Gemini API")
|
| 321 |
+
|
| 322 |
+
candidate = gemini_response["candidates"][0]
|
| 323 |
+
|
| 324 |
+
# Check if response was blocked
|
| 325 |
+
if "finishReason" in candidate and candidate["finishReason"] in ["SAFETY", "RECITATION"]:
|
| 326 |
+
raise HTTPException(status_code=400, detail=f"Response blocked: {candidate['finishReason']}")
|
| 327 |
+
|
| 328 |
+
if "content" not in candidate or "parts" not in candidate["content"]:
|
| 329 |
+
raise HTTPException(status_code=500, detail="Invalid response format from Gemini API")
|
| 330 |
+
|
| 331 |
+
response_text = candidate["content"]["parts"][0]["text"]
|
| 332 |
+
|
| 333 |
+
# Calculate token usage
|
| 334 |
+
prompt_text = " ".join([msg.content for msg in request.messages])
|
| 335 |
+
prompt_tokens = estimate_tokens(prompt_text)
|
| 336 |
+
completion_tokens = estimate_tokens(response_text)
|
| 337 |
+
|
| 338 |
+
# Convert to OpenAI format
|
| 339 |
+
response = ChatCompletionResponse(
|
| 340 |
+
id=f"chatcmpl-{int(time.time())}{random.randint(1000, 9999)}",
|
| 341 |
+
created=int(time.time()),
|
| 342 |
+
model=request.model,
|
| 343 |
+
choices=[Choice(
|
| 344 |
+
index=0,
|
| 345 |
+
message={
|
| 346 |
+
"role": "assistant",
|
| 347 |
+
"content": response_text
|
| 348 |
+
},
|
| 349 |
+
finish_reason="stop"
|
| 350 |
+
)],
|
| 351 |
+
usage=Usage(
|
| 352 |
+
prompt_tokens=prompt_tokens,
|
| 353 |
+
completion_tokens=completion_tokens,
|
| 354 |
+
total_tokens=prompt_tokens + completion_tokens
|
| 355 |
+
)
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
return response
|
| 359 |
+
|
| 360 |
+
except HTTPException:
|
| 361 |
+
raise
|
| 362 |
+
except Exception as e:
|
| 363 |
+
logger.error(f"Unexpected error: {str(e)}")
|
| 364 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
| 365 |
|
| 366 |
if __name__ == "__main__":
|
| 367 |
+
logger.info(f"π Starting Advanced Gemini Proxy on {config.HOST}:{config.PORT}")
|
| 368 |
+
logger.info(f"π Master API Key: {config.MASTER_API_KEY[:8]}...")
|
| 369 |
+
logger.info(f"π§ Loaded {len(config.GEMINI_API_KEYS)} Gemini API key(s)")
|
| 370 |
+
|
| 371 |
+
uvicorn.run(
|
| 372 |
+
app,
|
| 373 |
+
host=config.HOST,
|
| 374 |
+
port=config.PORT,
|
| 375 |
+
log_level=config.LOG_LEVEL.lower()
|
| 376 |
+
)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
requests==2.31.0
|
| 4 |
+
python-multipart==0.0.6
|
| 5 |
+
pydantic==2.5.0
|
| 6 |
+
python-dotenv==1.0.0
|