sonyps1928 commited on
Commit
36fde64
·
1 Parent(s): e27c591

update app16

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -2,14 +2,17 @@ import gradio as gr
2
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
  import torch
4
 
 
5
  # Load model and tokenizer (using smaller GPT-2 for free tier)
6
  model_name = "gpt2" # You can also use "gpt2-medium" if it fits in memory
7
  tokenizer = GPT2Tokenizer.from_pretrained(model_name)
8
  model = GPT2LMHeadModel.from_pretrained(model_name)
9
 
 
10
  # Set pad token
11
  tokenizer.pad_token = tokenizer.eos_token
12
 
 
13
  def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9, top_k=50):
14
  """Generate text using GPT-2"""
15
  try:
@@ -38,6 +41,7 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9, top_k=50):
38
  except Exception as e:
39
  return f"Error generating text: {str(e)}"
40
 
 
41
  # Create Gradio interface
42
  with gr.Blocks(title="GPT-2 Text Generator") as demo:
43
  gr.Markdown("# GPT-2 Text Generation Server")
@@ -103,13 +107,15 @@ with gr.Blocks(title="GPT-2 Text Generator") as demo:
103
  inputs=prompt_input
104
  )
105
 
106
- # Connect the function
107
  generate_btn.click(
108
  fn=generate_text,
109
  inputs=[prompt_input, max_length, temperature, top_p, top_k],
110
- outputs=output_text
 
111
  )
112
 
 
113
  # Launch the app
114
  if __name__ == "__main__":
115
- demo.launch()
 
2
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
  import torch
4
 
5
+
6
  # Load model and tokenizer (using smaller GPT-2 for free tier)
7
  model_name = "gpt2" # You can also use "gpt2-medium" if it fits in memory
8
  tokenizer = GPT2Tokenizer.from_pretrained(model_name)
9
  model = GPT2LMHeadModel.from_pretrained(model_name)
10
 
11
+
12
  # Set pad token
13
  tokenizer.pad_token = tokenizer.eos_token
14
 
15
+
16
  def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9, top_k=50):
17
  """Generate text using GPT-2"""
18
  try:
 
41
  except Exception as e:
42
  return f"Error generating text: {str(e)}"
43
 
44
+
45
  # Create Gradio interface
46
  with gr.Blocks(title="GPT-2 Text Generator") as demo:
47
  gr.Markdown("# GPT-2 Text Generation Server")
 
107
  inputs=prompt_input
108
  )
109
 
110
+ # Connect the function with explicit API endpoint name
111
  generate_btn.click(
112
  fn=generate_text,
113
  inputs=[prompt_input, max_length, temperature, top_p, top_k],
114
+ outputs=output_text,
115
+ api_name="/predict" # Explicit API endpoint for external calls
116
  )
117
 
118
+
119
  # Launch the app
120
  if __name__ == "__main__":
121
+ demo.launch()