import gradio as gr import duckdb from huggingface_hub import HfFileSystem from huggingface_hub.hf_file_system import safe_quote import pandas as pd fs = HfFileSystem() duckdb.register_filesystem(fs) dataset="glue" PARQUET_REVISION="refs/convert/parquet" path=f"mnli/glue-train.parquet" # Only from one split # path="mnli/*.parquet" # To read all parquets but it should be grouped by split getting from datasets server location=f"hf://datasets/{dataset}@{safe_quote(PARQUET_REVISION)}/{path}" print(location) def greet(dataset, config, split, sql): try: result = duckdb.query(f"SELECT idx as id, premise as p FROM '{location}' LIMIT 2").to_df() print("QUERY SUCCESSED") except Exception as error: print(f"Error: {str(error)}") return pd.DataFrame({"Error": [f"❌ {str(error)}"]}) return result with gr.Blocks() as demo: gr.Markdown(" ## DuckDB demo using parquet revision") dataset = gr.Textbox(label="dataset", placeholder="mstz/iris") config = gr.Textbox(label="config", placeholder="iris") split = gr.Textbox(label="split", placeholder="train") sql = gr.Textbox(label="sql", placeholder="SELECT 1") run_button = gr.Button("Run") gr.Markdown("### Result") cached_responses_table = gr.DataFrame() run_button.click(greet, inputs=[dataset, config, split, sql], outputs=cached_responses_table) if __name__ == "__main__": demo.launch() # duckdb.query(f"SELECT idx as id, premise as p FROM '{location}' LIMIT 2").show() # duckdb.query(f"SELECT idx as id, premise as p FROM '{location}' LIMIT 2") # duckdb.query(f"SELECT max(idx) as max FROM '{location}' LIMIT 2") # duckdb.query(f"SELECT idx FROM '{location}' ORDER BY idx DESC LIMIT 1").show()