Spaces:
Sleeping
Sleeping
# imports | |
import gradio as gr | |
import os | |
import cloudscraper | |
import requests | |
from transformers import pipeline | |
import torch | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Set your FastAPI backend endpoint | |
BACKEND_URL = "https://asr-evaluation-backend.emergentai.ug/submit-feedback" | |
model_map = { | |
"afrikaans": "asr-africa/mms-1B_all_nchlt_speech_corpus_Fleurs_CV_AFRIKAANS_57hr_v1", | |
"akan": "asr-africa/wav2vec2-xls-r-akan-100-hours", | |
"amharic": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-amh-200hrs-v1", | |
"bambara": "asr-africa/mms-bambara-50-hours-mixed-bambara-dataset", | |
"bemba": "asr-africa/whisper_BIG-C_BEMBA_189hr_v1", | |
"ewe": "asr-africa/wav2vec2-xls-r-ewe-100-hours", | |
"hausa": "asr-africa/wav2vec2-xls-r-1b-naijavoices-hausa-500hr-v0", | |
"igbo": "asr-africa/wav2vec2-xls-r-1b-naijavoices-igbo-500hr-v0", | |
"kinyarwanda": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-rw-100hrs-v1", | |
"lingala": "asr-africa/wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v2", | |
"luganda": "asr-africa/whisper-small-CV-Fleurs-lg-313hrs-v1", | |
"oromo": "asr-africa/mms-1b-all-Sagalee-orm-85hrs-4", | |
"shona": "asr-africa/W2V2_Bert_Afrivoice_FLEURS_Shona_100hr_v1", | |
"swahili": "asr-africa/wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-400hrs-v1-nolm", | |
"wolof": "asr-africa/w2v2-bert-Wolof-20-hours-Google-Fleurs-ALF-dataset", | |
"xhosa": "asr-africa/wav2vec2_xls_r_300m_nchlt_speech_corpus_Fleurs_XHOSA_63hr_v1", | |
"yoruba": "asr-africa/wav2vec2-xls-r-1b-naijavoices-yoruba-500hr-v0", | |
"zulu": "asr-africa/W2V2-Bert_nchlt_speech_corpus_Fleurs_ZULU_63hr_v1", | |
} | |
# Create storage directory | |
os.makedirs("responses", exist_ok=True) | |
# Transcription function | |
inference_device = 0 if torch.cuda.is_available() else -1 | |
def transcribe(audio, language): | |
asr = pipeline("automatic-speech-recognition", model=model_map[language], device=inference_device, token=HF_TOKEN) | |
text = asr(audio)["text"] # handling whisper models | |
return text, audio | |
# Save feedback by sending it to FastAPI backend | |
def save_feedback(audio_file, transcription, user_id, lang, env, device, domain, accuracy, | |
transcript_edit, orthography, orthography_issues, | |
meaning, meaning_loss, errors, error_examples, performance): | |
try: | |
with open(audio_file, "rb") as f: | |
audio_content = f.read() | |
metadata = { | |
"transcription": transcription, | |
"user_id": user_id, | |
"transcript_edit": transcript_edit, | |
"evaluated_language": lang, | |
"environment": env, | |
"device": device, | |
"domain": domain, | |
"accuracy": accuracy, | |
"orthography": orthography, | |
"orthography_issues": orthography_issues, | |
"meaning": meaning, | |
"meaning_loss": meaning_loss, | |
"errors": ",".join(errors) if errors else "", | |
"error_examples": error_examples, | |
"performance": performance | |
} | |
files = { | |
"audio_file": ("audio.wav", audio_content, "audio/wav") | |
} | |
scraper = cloudscraper.create_scraper() | |
response = scraper.post(BACKEND_URL, data=metadata, files=files, timeout=20) | |
if response.status_code == 201: | |
return "β Feedback submitted successfully. Thank you!" | |
else: | |
return f"β οΈ Submission failed: {response.status_code} β {response.text}" | |
except Exception as e: | |
return f"β Could not connect to the backend: {str(e)}" | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## African ASR Evaluation Platform") | |
gr.Markdown("**Select Language**") | |
lang = gr.Dropdown(list(model_map.keys()), label="", value=None) | |
gr.Markdown("**Upload or Record Audio**") | |
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Upload or record audio") | |
# transcribed_text = gr.Textbox(label="Transcription", interactive=False) | |
submit_btn = gr.Button("Transcribe") | |
gr.Markdown("**Transcription**") | |
transcribed_text = gr.Textbox(label="", interactive=False) | |
submit_btn.click(fn=transcribe, inputs=[audio_input, lang], outputs=[transcribed_text, audio_input]) | |
gr.Markdown("---\n## Feedback Form") | |
user_id = gr.Textbox(label="Please enter user ID.*") | |
env = gr.Dropdown(["Studio/Professional Recording", "Quiet Room (minimal noise)", "Noisy Background (e.g., street, cafe, market)"], label="What was the type of recording environment for the speech you evaluated? *",value=None) | |
device = gr.Dropdown(["Mobile Phone/Tablet", "Laptop/Computer Microphone", "Dedicated Microphone (e.g., headset, studio mic)"], label="What type of recording device was used? *",value=None) | |
domain = gr.Textbox(label="Was the speech related to a specific topic? If yes, please specify the topic (e.g., news, education, medical, law, religious, sports, science).") | |
accuracy = gr.Slider(1, 5, step=1, label="Overall, how accurate was the model's transcription for the audio you reviewed? *") | |
transcript_edit = gr.Textbox(label="If the transcription provided by the model was incorrect, please enter your corrected version.") | |
orthography = gr.Radio(["Yes, mostly correct", "No, major issues", "Partially (some correct, some incorrect)", "Not Applicable"], label="Did the transcription correctly use the standard orthography (including accents, diacritics, special characters) for the language?",value=None) | |
orthography_issues = gr.Textbox(label="If you selected \"No\" or \"Partially\", please describe any significant orthography issues you noticed.") | |
meaning = gr.Slider(1, 5, step=1, label="Did the model's transcription preserve the original meaning of the speech? *") | |
meaning_loss = gr.Textbox(label="If the meaning was not fully preserved (i.e., you rated 1-4 above), please briefly explain how it was changed or lost.") | |
errors = gr.CheckboxGroup([ | |
"Substitutions (wrong words used)", | |
"Omissions (words missing)", | |
"Insertions (extra words added)", | |
"Pronunciation-related errors (phonetically plausible but wrong word/spelling)", | |
"Diacritic/Tone/Special Character errors", | |
"Code-switching errors (mixing languages incorrectly)", | |
"Named Entity errors (names of people/places wrong)", | |
"Punctuation errors", | |
"No significant errors observed" | |
] , label="Which types of errors were most prominent or impactful in the transcriptions? *", value=[]) | |
error_examples = gr.Textbox(label="(Optional) Can you provide 1-2 examples of significant errors and how you would correct them?") | |
performance = gr.Textbox(label="Please describe the model's performance in your own words. What did it do well? What did it struggle with? *") | |
save_btn = gr.Button("Submit Feedback") | |
output_msg = gr.Textbox(label="Submission status",interactive=False) | |
save_btn.click( | |
fn=save_feedback, | |
inputs=[ | |
audio_input, transcribed_text, user_id, lang, env, device, domain, accuracy, | |
transcript_edit, orthography, orthography_issues, | |
meaning, meaning_loss, errors, error_examples, performance | |
], | |
outputs=[output_msg] | |
) | |
# Launch the interface | |
demo.launch() | |