Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, Wav2Vec2ProcessorWithLM | |
import os | |
def transcribe(audio, model_id, model_revison): | |
# load processor | |
p = Wav2Vec2ProcessorWithLM.from_pretrained(model_id, revision=model_revison) | |
# load eval pipeline | |
asr = pipeline("automatic-speech-recognition", model=model_id, tokenizer=p.tokenizer, feature_extractor=p.feature_extractor, decoder=p.decoder, token=os.getenv('HF_TOKEN')) | |
text = asr(audio)["text"] | |
return text | |
asr_app = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources=["upload", "microphone"], type="filepath"), | |
gr.Dropdown( | |
[ | |
"asr-africa/wav2vec2-xls-r-1b-naijavoices-hausa-500hr-v0", | |
"asr-africa/wav2vec2-xls-r-1b-naijavoices-igbo-500hr-v0", | |
"asr-africa/wav2vec2-xls-r-1b-naijavoices-yoruba-500hr-v0" | |
] | |
), | |
gr.Radio(["main","lm"]) | |
], | |
outputs="text", | |
title="NaijaVoices ASR", | |
description="Realtime demo for Hausa, Igbo and Yoruba speech recognition using a fine-tuned Wav2Vec2-XLS-R 1B model.", | |
) | |
asr_app.launch(share=True) | |