Spaces:
Sleeping
Sleeping
Updated app.py: Added all models
Browse files
app.py
CHANGED
|
@@ -2,26 +2,37 @@ import gradio as gr
|
|
| 2 |
from transformers import pipeline, Wav2Vec2ProcessorWithLM
|
| 3 |
import os
|
| 4 |
|
| 5 |
-
def transcribe(audio, language
|
| 6 |
model_map = {
|
| 7 |
"hausa": "asr-africa/wav2vec2-xls-r-1b-naijavoices-hausa-500hr-v0",
|
| 8 |
"igbo": "asr-africa/wav2vec2-xls-r-1b-naijavoices-igbo-500hr-v0",
|
| 9 |
"yoruba": "asr-africa/wav2vec2-xls-r-1b-naijavoices-yoruba-500hr-v0",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
}
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
"w/o LM": "main",
|
| 15 |
-
}
|
| 16 |
-
|
| 17 |
-
if revison_map[model] != "main":
|
| 18 |
-
# load processor
|
| 19 |
-
p = Wav2Vec2ProcessorWithLM.from_pretrained(model_map[language], revision=revison_map[model])
|
| 20 |
-
# load eval pipeline
|
| 21 |
-
asr = pipeline("automatic-speech-recognition", model=model_map[language], tokenizer=p.tokenizer, feature_extractor=p.feature_extractor, decoder=p.decoder, token=os.getenv('HF_TOKEN'))
|
| 22 |
else:
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
text = asr(audio)["text"]
|
| 27 |
return text
|
|
@@ -34,28 +45,28 @@ asr_app = gr.Interface(
|
|
| 34 |
[
|
| 35 |
"hausa",
|
| 36 |
"igbo",
|
| 37 |
-
"yoruba"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
]
|
| 39 |
),
|
| 40 |
-
gr.Radio(["w/o LM","w/ LM"])
|
| 41 |
-
],
|
| 42 |
-
examples=[
|
| 43 |
-
["./examples/CV/hausa/common_voice_ha_32885169.wav", "hausa", "w/o LM"],
|
| 44 |
-
["./examples/CV/hausa/common_voice_ha_32885169.wav", "hausa", "w/ LM"],
|
| 45 |
-
["./examples/CV/hausa/common_voice_ha_29417456.wav", "hausa", "w/o LM"],
|
| 46 |
-
["./examples/CV/hausa/common_voice_ha_29417456.wav", "hausa", "w/ LM"],
|
| 47 |
-
["./examples/CV/igbo/common_voice_ig_31594237.wav", "igbo", "w/o LM"],
|
| 48 |
-
["./examples/CV/igbo/common_voice_ig_31594237.wav", "igbo", "w/ LM"],
|
| 49 |
-
["./examples/CV/igbo/common_voice_ig_30710992.wav", "igbo", "w/o LM"],
|
| 50 |
-
["./examples/CV/igbo/common_voice_ig_30710992.wav", "igbo", "w/ LM"],
|
| 51 |
-
["./examples/CV/yoruba/common_voice_yo_36914062.wav", "yoruba", "w/o LM"],
|
| 52 |
-
["./examples/CV/yoruba/common_voice_yo_36914062.wav", "yoruba", "w/ LM"],
|
| 53 |
-
["./examples/CV/yoruba/common_voice_yo_36841367.wav", "yoruba", "w/o LM"],
|
| 54 |
-
["./examples/CV/yoruba/common_voice_yo_36841367.wav", "yoruba", "w/ LM"]
|
| 55 |
],
|
| 56 |
outputs="text",
|
| 57 |
-
title="
|
| 58 |
-
description="
|
| 59 |
)
|
| 60 |
|
| 61 |
asr_app.launch()
|
|
|
|
| 2 |
from transformers import pipeline, Wav2Vec2ProcessorWithLM
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
def transcribe(audio, language):
|
| 6 |
model_map = {
|
| 7 |
"hausa": "asr-africa/wav2vec2-xls-r-1b-naijavoices-hausa-500hr-v0",
|
| 8 |
"igbo": "asr-africa/wav2vec2-xls-r-1b-naijavoices-igbo-500hr-v0",
|
| 9 |
"yoruba": "asr-africa/wav2vec2-xls-r-1b-naijavoices-yoruba-500hr-v0",
|
| 10 |
+
"zulu": "asr-africa/W2V2-Bert_nchlt_speech_corpus_Fleurs_ZULU_63hr_v1",
|
| 11 |
+
"xhosa": "asr-africa/wav2vec2_xls_r_300m_nchlt_speech_corpus_Fleurs_XHOSA_63hr_v1",
|
| 12 |
+
"afrikaans": "asr-africa/mms-1B_all_nchlt_speech_corpus_Fleurs_CV_AFRIKAANS_57hr_v1",
|
| 13 |
+
"bemba": "asr-africa/w2v-bert-2.0-BIG_C-AMMI-BEMBA_SPEECH_CORPUS-BEMBA-189hrs-V1",
|
| 14 |
+
"shona": "asr-africa/W2V2_Bert_Afrivoice_FLEURS_Shona_100hr_v1",
|
| 15 |
+
"luganda": "asr-africa/whisper-small-CV-Fleurs-lg-313hrs-v1",
|
| 16 |
+
"swahili": "asr-africa/wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-400hrs-v1",
|
| 17 |
+
"lingala": "asr-africa/wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v2",
|
| 18 |
+
"amharic": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-amh-200hrs-v1",
|
| 19 |
+
"kinyarwanda": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-rw-100hrs-v1",
|
| 20 |
+
"oromo": "asr-africa/mms-1b-all-Sagalee-orm-85hrs-4",
|
| 21 |
+
"akan": "asr-africa/wav2vec2-xls-r-ewe-100-hours",
|
| 22 |
+
"ewe": "asr-africa/wav2vec2-xls-r-akan-100-hours",
|
| 23 |
+
"wolof": "asr-africa/w2v2-bert-Wolof-20-hours-Google-Fleurs-ALF-dataset",
|
| 24 |
+
"bambara": "asr-africa/mms-bambara-50-hours-mixed-bambara-dataset",
|
| 25 |
}
|
| 26 |
|
| 27 |
+
if language in ["hausa", "igbo", "yoruba"]:
|
| 28 |
+
revision = "lm"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
else:
|
| 30 |
+
revision = "main"
|
| 31 |
+
|
| 32 |
+
# load processor
|
| 33 |
+
p = Wav2Vec2ProcessorWithLM.from_pretrained(model_map[language], revision=revision)
|
| 34 |
+
# load eval pipeline
|
| 35 |
+
asr = pipeline("automatic-speech-recognition", model=model_map[language], tokenizer=p.tokenizer, feature_extractor=p.feature_extractor, decoder=p.decoder, token=os.getenv('HF_TOKEN'))
|
| 36 |
|
| 37 |
text = asr(audio)["text"]
|
| 38 |
return text
|
|
|
|
| 45 |
[
|
| 46 |
"hausa",
|
| 47 |
"igbo",
|
| 48 |
+
"yoruba",
|
| 49 |
+
"zulu",
|
| 50 |
+
"xhosa",
|
| 51 |
+
"afrikaans",
|
| 52 |
+
"bemba",
|
| 53 |
+
"shona",
|
| 54 |
+
"luganda",
|
| 55 |
+
"swahili",
|
| 56 |
+
"lingala",
|
| 57 |
+
"amharic",
|
| 58 |
+
"kinyarwanda",
|
| 59 |
+
"oromo",
|
| 60 |
+
"akan",
|
| 61 |
+
"ewe",
|
| 62 |
+
"wolof",
|
| 63 |
+
"bambara",
|
| 64 |
]
|
| 65 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
],
|
| 67 |
outputs="text",
|
| 68 |
+
title="ASR Africa",
|
| 69 |
+
description="This space serves as a realtime demo for automatic speech recognition models developed by Mak-CAD under the auspicies of Gates Foundation for 19 African languages using open source data.",
|
| 70 |
)
|
| 71 |
|
| 72 |
asr_app.launch()
|