File size: 18,879 Bytes
c123609
aa25b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c123609
aa25b19
 
 
 
 
 
c123609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b41a20
c123609
7b41a20
c123609
 
7defefc
c123609
ef750f9
c123609
63181af
c123609
 
83b0d3a
c123609
f86beb4
 
c123609
83b0d3a
8a2fb86
c123609
 
 
 
 
 
56084f9
c123609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56084f9
c123609
56084f9
 
 
c123609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86beb4
 
 
 
 
c123609
 
 
f86beb4
 
 
 
c123609
f86beb4
c123609
f86beb4
 
c123609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86beb4
 
c123609
 
 
f86beb4
 
 
83b0d3a
 
c123609
a9db5e7
83b0d3a
f86beb4
c123609
 
 
f86beb4
c123609
83b0d3a
 
c123609
83b0d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
c123609
 
 
 
83b0d3a
 
 
 
 
a9db5e7
83b0d3a
 
 
c123609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56084f9
c123609
56084f9
 
a35db3d
c123609
 
 
 
 
 
 
 
 
 
 
 
 
56084f9
 
c123609
 
 
 
f86beb4
 
 
c123609
 
 
f86beb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c123609
f86beb4
c123609
 
f86beb4
 
 
 
c123609
f86beb4
c123609
f86beb4
 
 
 
 
c123609
a35db3d
c123609
f5a4cec
 
 
56084f9
f5a4cec
 
 
 
56084f9
f5a4cec
 
 
 
 
 
 
a35db3d
 
f5a4cec
56084f9
 
 
f5a4cec
 
 
 
 
 
 
 
c123609
 
 
 
 
 
 
 
f86beb4
c123609
 
f86beb4
c123609
 
83b0d3a
 
c123609
 
 
 
 
 
 
 
f86beb4
 
 
f5a4cec
f86beb4
 
 
c123609
 
a9db5e7
83b0d3a
c123609
83b0d3a
 
 
 
 
f86beb4
83b0d3a
f86beb4
 
 
c123609
 
 
 
 
 
83b0d3a
f86beb4
83b0d3a
f86beb4
83b0d3a
 
c123609
 
 
f86beb4
 
83b0d3a
 
f86beb4
c123609
83b0d3a
2d17b60
 
c123609
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

import spaces
import torch
import argparse
import os
import sys
import pickle  # For serializing frames
import gc
import tempfile
import subprocess
from datetime import datetime
from transformers import AutoModel, AutoTokenizer
from modelscope.hub.snapshot_download import snapshot_download
from PIL import Image
from decord import VideoReader, cpu
import cv2
import gradio as gr
from ultralytics import YOLO
import numpy as np
import io

# Install flash-attn (using prebuilt wheel mode if needed)
subprocess.run(
    'pip install flash-attn --no-build-isolation',
    env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': 'TRUE'},
    shell=True
)
# --------------------------------------------------------------------
# Command-line arguments
# --------------------------------------------------------------------
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
# New arguments for subprocess inference (unused in this version)
parser.add_argument("--chunk_inference", action="store_true", help="Run inference on a chunk (subprocess mode).")
parser.add_argument("--input_file", type=str, help="Path to serialized input chunk frames.")
parser.add_argument("--output_file", type=str, help="Path to file where inference result is written.")
parser.add_argument("--inference_prompt", type=str, help="Inference prompt for the chunk.")
parser.add_argument("--model_path_arg", type=str, help="Model path for the subprocess.")
args = parser.parse_args()
device = args.device
assert device in ['cuda', 'mps']

# Global model configuration
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
MODEL_CACHE_DIR = os.getenv('TRANSFORMERS_CACHE', './models')
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)

# Download and cache the model (only in the main process)
if not args.chunk_inference:
    try:
        model_path = snapshot_download(MODEL_NAME, cache_dir=MODEL_CACHE_DIR)
    except Exception as e:
        print(f"Error downloading model: {str(e)}")
        model_path = os.path.join(MODEL_CACHE_DIR, MODEL_NAME)
else:
    model_path = args.model_path_arg

MAX_NUM_FRAMES = 64

# Initialize YOLO model (assumed to be lightweight)
YOLO_MODEL = YOLO('./best_yolov11.pt')  # Load YOLOv11 model

# File type validation
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}

def get_file_extension(filename):
    return os.path.splitext(filename)[1].lower()

def is_image(filename):
    return get_file_extension(filename) in IMAGE_EXTENSIONS

def is_video(filename):
    return get_file_extension(filename) in VIDEO_EXTENSIONS

# --------------------------------------------------------------------
# Model Loading and Inference Functions
# --------------------------------------------------------------------
def load_model_and_tokenizer():
    """Load a fresh instance of the model and tokenizer."""
    try:
        # Clear GPU memory if using CUDA (only at initial load)
        if device == "cuda":
            torch.cuda.empty_cache()
            gc.collect()
        model = AutoModel.from_pretrained(
            model_path,
            attn_implementation='sdpa',
            trust_remote_code=True,
            torch_dtype=torch.half,
            device_map='auto'
        )
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        model.eval()
        processor = model.init_processor(tokenizer)
        return model, tokenizer, processor
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        raise

def process_video_chunk(video_frames, model, tokenizer, processor, prompt):
    """Process a chunk of video frames with mPLUG model."""
    messages = [{
        "role": "user",
        "content": prompt,
        "video_frames": video_frames
    }]
    model_messages = []
    videos = []
    for msg in messages:
        content_str = msg["content"]
        if "video_frames" in msg and msg["video_frames"]:
            content_str += "<|video|>"
            videos.append(msg["video_frames"])
        model_messages.append({"role": msg["role"], "content": content_str})
    model_messages.append({"role": "assistant", "content": ""})
    inputs = processor(
        model_messages,
        images=None,
        videos=videos if videos else None
    )
    inputs.to('cuda')
    inputs.update({
        'tokenizer': tokenizer,
        'max_new_tokens': 100,
        'decode_text': True,
        'use_cache': False  # disable caching to reduce memory buildup
    })
    with torch.no_grad():
        response = model.generate(**inputs)
    del inputs  # delete inputs to free temporary memory
    return response[0]

# --------------------------------------------------------------------
# Video and YOLO functions (unchanged)
# --------------------------------------------------------------------
def encode_video_in_chunks(video_path):
    """Extract frames from a video in chunks."""
    vr = VideoReader(video_path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)  # 1 FPS
    frame_idx = [i for i in range(0, len(vr), sample_fps)]
    chunks = [frame_idx[i:i + MAX_NUM_FRAMES] for i in range(0, len(frame_idx), MAX_NUM_FRAMES)]
    for chunk_idx, chunk in enumerate(chunks):
        frames = vr.get_batch(chunk).asnumpy()
        frames = [Image.fromarray(v.astype('uint8')) for v in frames]
        yield chunk_idx, frames

def process_yolo_results(results):
    """Process YOLO detection results and count people and machinery."""
    people_count = 0
    machine_types = {
        "Tower Crane": 0, "Mobile Crane": 0, "Compactor/Roller": 0, "Bulldozer": 0,
        "Excavator": 0, "Dump Truck": 0, "Concrete Mixer": 0, "Loader": 0,
        "Pump Truck": 0, "Pile Driver": 0, "Grader": 0, "Other Vehicle": 0
    }
    for r in results:
        boxes = r.boxes
        for box in boxes:
            cls = int(box.cls[0])
            conf = float(box.conf[0])
            class_name = YOLO_MODEL.names[cls]
            if class_name.lower() == 'worker' and conf > 0.5:
                people_count += 1
            machinery_mapping = {
                'tower_crane': "Tower Crane",
                'mobile_crane': "Mobile Crane",
                'compactor': "Compactor/Roller",
                'roller': "Compactor/Roller",
                'bulldozer': "Bulldozer",
                'dozer': "Bulldozer",
                'excavator': "Excavator",
                'dump_truck': "Dump Truck",
                'truck': "Dump Truck",
                'concrete_mixer_truck': "Concrete Mixer",
                'loader': "Loader",
                'pump_truck': "Pump Truck",
                'pile_driver': "Pile Driver",
                'grader': "Grader",
                'other_vehicle': "Other Vehicle"
            }
            if conf > 0.5:
                class_lower = class_name.lower()
                for key, value in machinery_mapping.items():
                    if key in class_lower:
                        machine_types[value] += 1
                        break
    total_machinery = sum(machine_types.values())
    return people_count, total_machinery, machine_types

def detect_people_and_machinery(media_path):
    """Detect people and machinery using YOLOv11 for both images and videos."""
    try:
        max_people_count = 0
        max_machine_types = {
            "Tower Crane": 0, "Mobile Crane": 0, "Compactor/Roller": 0, "Bulldozer": 0,
            "Excavator": 0, "Dump Truck": 0, "Concrete Mixer": 0, "Loader": 0,
            "Pump Truck": 0, "Pile Driver": 0, "Grader": 0, "Other Vehicle": 0
        }
        if isinstance(media_path, str) and is_video(media_path):
            cap = cv2.VideoCapture(media_path)
            fps = cap.get(cv2.CAP_PROP_FPS)
            sample_rate = max(1, int(fps))
            frame_count = 0
            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                if frame_count % sample_rate == 0:
                    results = YOLO_MODEL(frame)
                    people, _, machine_types = process_yolo_results(results)
                    max_people_count = max(max_people_count, people)
                    for k, v in machine_types.items():
                        max_machine_types[k] = max(max_machine_types[k], v)
                frame_count += 1
            cap.release()
        else:
            if isinstance(media_path, str):
                img = cv2.imread(media_path)
            else:
                img = cv2.cvtColor(np.array(media_path), cv2.COLOR_RGB2BGR)
            results = YOLO_MODEL(img)
            max_people_count, _, max_machine_types = process_yolo_results(results)
        max_machine_types = {k: v for k, v in max_machine_types.items() if v > 0}
        total_machinery_count = sum(max_machine_types.values())
        return max_people_count, total_machinery_count, max_machine_types
    except Exception as e:
        print(f"Error in YOLO detection: {str(e)}")
        return 0, 0, {}

def process_image(image_path, model, tokenizer, processor, prompt):
    """Process single image with mPLUG model."""
    try:
        image = Image.open(image_path)
        messages = [{
            "role": "user",
            "content": prompt,
            "images": [image]
        }]
        model_messages = []
        images = []
        for msg in messages:
            content_str = msg["content"]
            if "images" in msg and msg["images"]:
                content_str += "<|image|>"
                images.extend(msg["images"])
            model_messages.append({"role": msg["role"], "content": content_str})
        model_messages.append({"role": "assistant", "content": ""})
        inputs = processor(model_messages, images=images, videos=None)
        inputs.to('cuda')
        inputs.update({
            'tokenizer': tokenizer,
            'max_new_tokens': 100,
            'decode_text': True,
            'use_cache': False
        })
        with torch.no_grad():
            response = model.generate(**inputs)
        del inputs
        return response[0]
    except Exception as e:
        print(f"Error processing image: {str(e)}")
        return "Error processing image"

def analyze_image_activities(image_path):
    """Analyze image using mPLUG model."""
    try:
        model, tokenizer, processor = load_model_and_tokenizer()
        prompt = ("Analyze this construction site image and describe the activities happening. "
                  "Focus on construction activities, machinery usage, and worker actions.")
        response = process_image(image_path, model, tokenizer, processor, prompt)
        del model, tokenizer, processor
        torch.cuda.empty_cache()  # Final cleanup after image processing
        gc.collect()
        return response
    except Exception as e:
        print(f"Error analyzing image: {str(e)}")
        return "Error analyzing image activities"

def annotate_video_with_bboxes(video_path):
    """
    Reads the video frame-by-frame, runs YOLO, draws bounding boxes,
    writes a per-frame summary of detected classes on the frame, and saves
    the annotated video. Returns the annotated video path.
    """
    cap = cv2.VideoCapture(video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
    annotated_video_path = out_file.name
    out_file.close()
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    writer = cv2.VideoWriter(annotated_video_path, fourcc, fps, (w, h))
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        results = YOLO_MODEL(frame)
        frame_counts = {}
        for r in results:
            boxes = r.boxes
            for box in boxes:
                cls_id = int(box.cls[0])
                conf = float(box.conf[0])
                if conf < 0.5:
                    continue
                x1, y1, x2, y2 = box.xyxy[0]
                class_name = YOLO_MODEL.names[cls_id]
                x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
                color = (0, 255, 0)
                cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
                label_text = f"{class_name} {conf:.2f}"
                cv2.putText(frame, label_text, (x1, y1 - 6),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
                frame_counts[class_name] = frame_counts.get(class_name, 0) + 1
        summary_str = ", ".join(f"{cls_name}: {count}" for cls_name, count in frame_counts.items())
        cv2.putText(frame, summary_str, (15, 30),
                    cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 0), 2)
        writer.write(frame)
    cap.release()
    writer.release()
    return annotated_video_path

# --------------------------------------------------------------------
# Adjusted Video Analysis with Single mPLUG Instance (No Reload)
# --------------------------------------------------------------------
@spaces.GPU
def analyze_video_activities_single_instance(video_path):
    """Analyze video using mPLUG model with chunking.
       Use a single mPLUG model instance for all chunks without any per-chunk cleanup."""
    try:
        all_responses = []
        chunk_generator = encode_video_in_chunks(video_path)
        
        # Load model instance once
        model, tokenizer, processor = load_model_and_tokenizer()

        for chunk_idx, video_frames in chunk_generator:
            prompt = (
                "Analyze this construction site video chunk and describe the activities happening. "
                "Focus on construction activities, machinery usage, and worker actions."
            )
            with torch.no_grad():
                response = process_video_chunk(video_frames, model, tokenizer, processor, prompt)
            all_responses.append(f"Time period {chunk_idx + 1}:\n{response}")
            # No per-chunk cache clearing is performed here

        # Final cleanup after processing all chunks
        del model, tokenizer, processor
        torch.cuda.empty_cache()
        gc.collect()
        return "\n\n".join(all_responses)
    except Exception as e:
        print(f"Error analyzing video: {str(e)}")
        return "Error analyzing video activities"

# --------------------------------------------------------------------
# Gradio Interface and Main Launch (only executed in main process)
# --------------------------------------------------------------------
@spaces.GPU
def process_diary(day, date, total_people, total_machinery, machinery_types, activities, media):
    """Process the site diary entry."""
    if media is None:
        return [day, date, "No media uploaded", "No media uploaded", "No media uploaded", "No media uploaded", None]
    try:
        if not hasattr(media, 'name'):
            raise ValueError("Invalid file upload")
        file_ext = get_file_extension(media.name)
        if not (is_image(media.name) or is_video(media.name)):
            raise ValueError(f"Unsupported file type: {file_ext}")
        with tempfile.NamedTemporaryFile(suffix=file_ext, delete=False) as temp_file:
            temp_path = temp_file.name
            if hasattr(media, 'name') and os.path.exists(media.name):
                with open(media.name, 'rb') as f:
                    temp_file.write(f.read())
            else:
                file_content = media.read() if hasattr(media, 'read') else media
                temp_file.write(file_content if isinstance(file_content, bytes) else file_content.read())
        detected_people, detected_machinery, detected_machinery_types = detect_people_and_machinery(temp_path)
        annotated_video_path = None
        if is_image(media.name):
            detected_activities = analyze_image_activities(temp_path)
        else:
            detected_activities = analyze_video_activities_single_instance(temp_path)
            annotated_video_path = annotate_video_with_bboxes(temp_path)
        if os.path.exists(temp_path):
            os.remove(temp_path)
        detected_types_str = ", ".join([f"{k}: {v}" for k, v in detected_machinery_types.items()])
        return [day, date, str(detected_people), str(detected_machinery), detected_types_str, detected_activities, annotated_video_path]
    except Exception as e:
        print(f"Error processing media: {str(e)}")
        return [day, date, "Error processing media", "Error processing media", "Error processing media", "Error processing media", None]

with gr.Blocks(title="Digital Site Diary") as demo:
    gr.Markdown("# 📝 Digital Site Diary")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### User Input")
            day = gr.Textbox(label="Day", value='9')
            date = gr.Textbox(label="Date", placeholder="YYYY-MM-DD", value=datetime.now().strftime("%Y-%m-%d"))
            total_people = gr.Number(label="Total Number of People", precision=0, value=10)
            total_machinery = gr.Number(label="Total Number of Machinery", precision=0, value=3)
            machinery_types = gr.Textbox(label="Number of Machinery Per Type",
                                         placeholder="e.g., Excavator: 2, Roller: 1",
                                         value="Excavator: 2, Roller: 1")
            activities = gr.Textbox(label="Activity",
                                    placeholder="e.g., 9 AM: Excavation, 10 AM: Concreting",
                                    value="9 AM: Excavation, 10 AM: Concreting", lines=3)
            media = gr.File(label="Upload Image/Video", file_types=["image", "video"])
            submit_btn = gr.Button("Submit", variant="primary")
        with gr.Column():
            gr.Markdown("### Model Detection")
            model_day = gr.Textbox(label="Day")
            model_date = gr.Textbox(label="Date")
            model_people = gr.Textbox(label="Total Number of People")
            model_machinery = gr.Textbox(label="Total Number of Machinery")
            model_machinery_types = gr.Textbox(label="Number of Machinery Per Type")
            model_activities = gr.Textbox(label="Activity", lines=5)
            model_annotated_video = gr.Video(label="Annotated Video")
    submit_btn.click(
        fn=process_diary,
        inputs=[day, date, total_people, total_machinery, machinery_types, activities, media],
        outputs=[model_day, model_date, model_people, model_machinery, model_machinery_types, model_activities, model_annotated_video]
    )

if __name__ == "__main__":
    demo.launch(share=False, debug=True, show_api=False, server_port=args.port, server_name=args.host)