Spaces:
Sleeping
Sleeping
File size: 25,945 Bytes
a80b741 efd5a3f aa25b19 efd5a3f aa25b19 6c50846 a80b741 aa25b19 efd5a3f 6c50846 efd5a3f aa25b19 6d1a54e 6c50846 efd5a3f 6c50846 f86beb4 efd5a3f f86beb4 a80b741 6c50846 efd5a3f 6c50846 efd5a3f 6c50846 f86beb4 6c50846 c123609 efd5a3f 6c50846 efd5a3f 6c50846 efd5a3f 6c50846 efd5a3f 6c50846 efd5a3f 6c50846 efd5a3f c123609 6c50846 efd5a3f 6c50846 efd5a3f a9db5e7 83b0d3a 6c50846 efd5a3f 6c50846 83b0d3a efd5a3f 6c50846 efd5a3f 83b0d3a efd5a3f 6c50846 efd5a3f 6c50846 efd5a3f 6c50846 efd5a3f 83b0d3a 6c50846 efd5a3f 83b0d3a efd5a3f 2d17b60 6c50846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
import spaces
import gradio as gr
from datetime import datetime
import tempfile
import os
import json
import torch
import gc
import shutil # Added for directory cleanup
from azure.storage.blob import BlobServiceClient # Added for Azure integration
def debug():
torch.randn(10).cuda()
debug()
from PIL import Image
from decord import VideoReader, cpu
from yolo_detection import (
detect_people_and_machinery, # Keep for images
# annotate_video_with_bboxes, # Replaced by unified function
process_video_unified, # Import the new unified function
is_image,
is_video
)
from image_captioning import (
analyze_image_activities,
analyze_video_activities,
process_video_chunk,
load_model_and_tokenizer,
MAX_NUM_FRAMES
)
# Load model instance once
gc.collect()
torch.cuda.empty_cache()
model, tokenizer, processor = load_model_and_tokenizer()
print("Model loaded.")
# Azure Blob Storage Setup
CONTAINER_NAME = "logs" # Replace with your actual container name
connection_string = "BlobEndpoint=https://assentian.blob.core.windows.net/;QueueEndpoint=https://assentian.queue.core.windows.net/;FileEndpoint=https://assentian.file.core.windows.net/;TableEndpoint=https://assentian.table.core.windows.net/;SharedAccessSignature=sv=2024-11-04&ss=bfqt&srt=sco&sp=rwdlacupiytfx&se=2025-04-30T17:16:18Z&st=2025-04-22T09:16:18Z&spr=https&sig=AkJb79C%2FJ0G1HqfotIYuSfm%2Fb%2BQ2E%2FjvxV3ZG7ejVQo%3D"
if not connection_string:
print("Warning: AZURE_STORAGE_CONNECTION_STRING not found. Azure Blob functionality will be disabled.")
# Initialize Azure Blob Service Client if connection string is available
blob_service_client = None
if connection_string:
try:
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
print("Azure Blob Service Client initialized successfully.")
except Exception as e:
print(f"Error initializing BlobServiceClient: {str(e)}")
blob_service_client = None
def list_blobs():
"""List video blobs in the specified Azure container."""
if not blob_service_client:
print("Cannot list blobs: BlobServiceClient is not initialized.")
return []
try:
container_client = blob_service_client.get_container_client(CONTAINER_NAME)
blobs = container_client.list_blobs()
video_extensions = ['.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v']
blob_list = [blob.name for blob in blobs if any(blob.name.lower().endswith(ext) for ext in video_extensions)]
print(f"Found {len(blob_list)} video blobs in container '{CONTAINER_NAME}': {blob_list}")
return blob_list
except Exception as e:
print(f"Error listing blobs in container '{CONTAINER_NAME}': {str(e)}")
return []
# Fetch blob names at startup
blob_names = list_blobs()
print(f"Populated azure_blob dropdown with {len(blob_names)} options.")
# Global storage for activities and media paths
global_activities = []
global_media_path = None
global_temp_media_path = None # Store path if downloaded from Azure for cleanup
# Create tmp directory for storing frames
tmp_dir = os.path.join('.', 'tmp')
os.makedirs(tmp_dir, exist_ok=True)
@spaces.GPU
def process_diary(day, date, total_people, total_machinery, machinery_types, activities, media_source, local_file, azure_blob):
"""Process the site diary entry with media from local file or Azure Blob Storage."""
global global_activities, global_media_path, global_temp_media_path
global_temp_media_path = None # Reset before processing
if media_source == "Local File":
if local_file is None:
return [day, date, "No media uploaded", "No media uploaded", "No media uploaded", None, None, [], None, []]
media_path = local_file # local_file is a string path in Gradio
print(f"Processing local file: {media_path}")
else: # Azure Blob
if not azure_blob or not blob_service_client:
return [day, date, "No blob selected or Azure not configured", "No blob selected or Azure not configured",
"No blob selected or Azure not configured", None, None, [], None, []]
try:
blob_client = blob_service_client.get_blob_client(container=CONTAINER_NAME, blob=azure_blob)
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(azure_blob)[1]) as temp_file:
temp_path = temp_file.name
blob_data = blob_client.download_blob()
blob_data.readinto(temp_file)
media_path = temp_path
global_temp_media_path = media_path # Store for cleanup
print(f"Downloaded Azure blob '{azure_blob}' to temporary file: {media_path}")
except Exception as e:
print(f"Error downloading blob '{azure_blob}': {str(e)}")
return [day, date, "Error downloading blob", "Error downloading blob", "Error downloading blob", None, None, [], None, []]
# Ensure cleanup happens even on error
try:
file_ext = get_file_extension(media_path)
if not (is_image(media_path) or is_video(media_path)):
raise ValueError(f"Unsupported file type: {file_ext}")
annotated_video_path = None # Initialize
if is_image(media_path):
# Process image with original function
detected_people, detected_machinery, detected_machinery_types = detect_people_and_machinery(media_path)
detected_activities = analyze_image_activities(media_path)
else: # It's a video
# Process video with the unified function
print("Processing video with unified YOLO function...")
detected_people, detected_machinery, detected_machinery_types, annotated_video_path = process_video_unified(media_path)
print(f"Unified YOLO results - People: {detected_people}, Machinery: {detected_machinery}, Types: {detected_machinery_types}, Annotated Video: {annotated_video_path}")
# Now analyze activities
detected_activities = analyze_video_activities(media_path, model, tokenizer, processor)
# Debug the detected activities
print(f"Detected activities (raw): {detected_activities}")
print(f"Type of detected_activities: {type(detected_activities)}")
# Ensure detected_activities is a list of dictionaries
if isinstance(detected_activities, str):
print("Warning: detected_activities is a string, converting to list of dicts.")
detected_activities = [{"time": "Unknown", "summary": detected_activities}]
elif not isinstance(detected_activities, list):
print("Warning: detected_activities is not a list, wrapping in a list.")
detected_activities = [{"time": "Unknown", "summary": str(detected_activities)}]
# Validate each activity
for activity in detected_activities:
if not isinstance(activity, dict):
print(f"Warning: Invalid activity format: {activity}, converting.")
activity = {"time": "Unknown", "summary": str(activity)}
print(f"Processed detected_activities: {detected_activities}")
# Store activities and media path globally for chat mode
global_activities = detected_activities
global_media_path = media_path
# The annotation is now handled within process_video_unified for videos
# if is_video(media_path):
# annotated_video_path = annotate_video_with_bboxes(media_path) # Removed duplicate call
# print(f"Generated annotated video: {annotated_video_path}")
# Clean up temporary file if downloaded from Azure - This is now handled in the finally block
# if media_source == "Azure Blob" and os.path.exists(media_path):
# os.remove(media_path)
# print(f"Cleaned up temporary file: {media_path}")
detected_types_str = ", ".join([f"{k}: {v}" for k, v in detected_machinery_types.items()])
# The cleanup for Azure temp files is now handled in the finally block
# os.remove(media_path)
# print(f"Cleaned up temporary file: {media_path}")
# We'll return the activities as a list for the card display
# Clear the chat history when loading new media
chat_history = []
# Extract data for the activity table
activity_rows = []
for activity in detected_activities:
time = activity.get('time', 'Unknown')
summary = activity.get('summary', 'No description available')
activity_rows.append([time, summary])
print(f"Activity rows for Dataframe: {activity_rows}")
return [day, date, str(detected_people), str(detected_machinery),
detected_types_str, gr.update(visible=True), annotated_video_path,
detected_activities, chat_history, activity_rows]
except Exception as e:
print(f"Error processing media: {str(e)}")
# Cleanup is handled in finally block now
# if media_source == "Azure Blob" and os.path.exists(media_path):
# os.remove(media_path)
# print(f"Cleaned up temporary file due to error: {media_path}")
return [day, date, "Error processing media", "Error processing media",
"Error processing media", None, None, [], None, []]
finally:
# Cleanup temporary files and GPU memory
print("Running cleanup...")
if global_temp_media_path and os.path.exists(global_temp_media_path):
try:
os.remove(global_temp_media_path)
print(f"Cleaned up temporary Azure file: {global_temp_media_path}")
except OSError as e:
print(f"Error removing temporary Azure file {global_temp_media_path}: {e}")
# Clear GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print("Cleared GPU cache.")
def get_file_extension(filename):
return os.path.splitext(filename)[1].lower()
def on_card_click(activity_indices, history, evt: gr.SelectData):
"""Handle clicking on an activity card in the gallery"""
global global_activities, global_media_path
# Get the index of the selected activity from the SelectData event
selected_idx = evt.index
# Map the gallery index to the actual activity index
if selected_idx < 0 or selected_idx >= len(activity_indices):
return [gr.update(visible=True), gr.update(visible=False), [], None]
card_idx = activity_indices[selected_idx]
print(f"Gallery item {selected_idx} clicked, corresponds to activity index: {card_idx}")
if card_idx < 0 or card_idx >= len(global_activities):
return [gr.update(visible=True), gr.update(visible=False), [], None]
selected_activity = global_activities[card_idx]
chunk_video_path = None
# Use the pre-saved chunk video if available
if 'chunk_path' in selected_activity and os.path.exists(selected_activity['chunk_path']):
chunk_video_path = selected_activity['chunk_path']
print(f"Using pre-saved chunk video: {chunk_video_path}")
else:
# Fallback to full video if chunk not available
chunk_video_path = global_media_path
print(f"Chunk video not available, using full video: {chunk_video_path}")
# Add the selected activity to chat history
history = []
history.append((None, f"🎬 Selected video at timestamp {selected_activity['time']}"))
# Add the thumbnail to the chat as a visual element
if 'thumbnail' in selected_activity and os.path.exists(selected_activity['thumbnail']):
# Use the tuple format for images in chatbot
thumbnail_path = selected_activity['thumbnail']
history.append((None, f"📷 Video frame at {selected_activity['time']}"))
history.append((None, thumbnail_path))
# Format message about the detected activity
activity_info = f"I detected the following activity:\n\n{selected_activity['summary']}"
if selected_activity['objects']:
activity_info += f"\n\nIdentified objects: {', '.join(selected_activity['objects'])}"
history.append(("Tell me about this video segment", activity_info))
return [gr.update(visible=False), gr.update(visible=True), history, chunk_video_path]
def chat_with_video(message, history):
"""Chat with the mPLUG model about the selected video segment"""
global global_activities, global_media_path
try:
# Get the selected activity from the history to identify which chunk we're discussing
selected_chunk_idx = None
selected_time = None
selected_activity = None
for entry in history:
if entry[0] is None and "Selected video at timestamp" in entry[1]:
time_str = entry[1].split("Selected video at timestamp ")[1]
selected_time = time_str.strip()
break
# Find the corresponding chunk
if selected_time:
for i, activity in enumerate(global_activities):
if activity.get('time') == selected_time:
selected_chunk_idx = activity.get('chunk_id')
selected_activity = activity
break
# If we found the chunk, use the model to analyze it
if selected_chunk_idx is not None and global_media_path and selected_activity:
# Generate prompt based on user question and add context about what's in the video
context = f"This video shows construction site activities at timestamp {selected_time}."
if selected_activity.get('objects'):
context += f" The scene contains {', '.join(selected_activity.get('objects'))}."
prompt = f"{context} Analyze this segment of construction site video and answer this question: {message}"
# This would ideally use the specific chunk, but for simplicity we'll use the global path
# In a production system, you'd extract just that chunk of the video
vr = VideoReader(global_media_path, ctx=cpu(0))
# Get the frames for this chunk
sample_fps = round(vr.get_avg_fps() / 1)
frame_idx = [i for i in range(0, len(vr), sample_fps)]
# Extract frames for the specific chunk
chunk_size = MAX_NUM_FRAMES
start_idx = selected_chunk_idx * chunk_size
end_idx = min(start_idx + chunk_size, len(frame_idx))
chunk_frames = frame_idx[start_idx:end_idx]
if chunk_frames:
frames = vr.get_batch(chunk_frames).asnumpy()
frames_pil = [Image.fromarray(v.astype('uint8')) for v in frames]
# Process frames with model
response = process_video_chunk(frames_pil, model, tokenizer, processor, prompt)
return history + [(message, response)]
else:
return history + [(message, "Could not extract frames for this segment.")]
else:
# Fallback response if we can't identify the chunk
thumbnail = None
response_text = f"I'm analyzing your question about the video segment: {message}\n\nBased on what I can see in this segment, it appears to show construction activity with various machinery and workers on site. The specific details would depend on the exact timestamp you're referring to."
# Try to get a thumbnail from the selected activity if available
if selected_activity and 'thumbnail' in selected_activity and os.path.exists(selected_activity['thumbnail']):
thumbnail = selected_activity['thumbnail']
new_history = history + [(message, response_text)]
new_history.append((None, f"📷 Video frame at {selected_time}"))
new_history.append((None, thumbnail))
return new_history
return history + [(message, response_text)]
except Exception as e:
print(f"Error in chat_with_video: {str(e)}")
return history + [(message, f"I encountered an error while processing your question. Let me try to answer based on what I can see: {message}\n\nThe video appears to show construction site activities, but I'm having trouble with the detailed analysis at the moment.")]
# Native Gradio activity cards
def create_activity_cards_ui(activities):
"""Create activity cards using native Gradio components"""
if not activities:
return gr.HTML("<div class='activity-timeline'><h3>No activities detected</h3></div>"), []
# Prepare data for gallery
thumbnails = []
captions = []
activity_indices = []
for i, activity in enumerate(activities):
thumbnail = activity.get('thumbnail', '')
time = activity.get('time', 'Unknown')
summary = activity.get('summary', 'No description available')
objects_list = activity.get('objects', [])
objects_text = f"Objects: {', '.join(objects_list)}" if objects_list else ""
# Truncate summary if too long
if len(summary) > 150:
summary = summary[:147] + "..."
thumbnails.append(thumbnail)
captions.append(f"Timestamp: {time} | {summary}")
activity_indices.append(i)
# Create a gallery for the thumbnails
gallery = gr.Gallery(
value=[(path, caption) for path, caption in zip(thumbnails, captions)],
columns=5,
rows=None,
height="auto",
object_fit="contain",
label="Activity Timeline"
)
return gallery, activity_indices
# Create the Gradio interface
with gr.Blocks(title="Digital Site Diary", css="") as demo:
gr.Markdown("# 📝 Digital Site Diary")
# Activity data and indices storage
activity_data = gr.State([])
activity_indices = gr.State([])
# Create tabs for different views
with gr.Tabs() as tabs:
with gr.Tab("Site Diary"):
with gr.Row():
# User Input Column
with gr.Column():
gr.Markdown("### User Input")
day = gr.Textbox(label="Day", value='9')
date = gr.Textbox(label="Date", placeholder="YYYY-MM-DD", value=datetime.now().strftime("%Y-%m-%d"))
total_people = gr.Number(label="Total Number of People", precision=0, value=10)
total_machinery = gr.Number(label="Total Number of Machinery", precision=0, value=3)
machinery_types = gr.Textbox(
label="Number of Machinery Per Type",
placeholder="e.g., Excavator: 2, Roller: 1",
value="Excavator: 2, Roller: 1"
)
activities = gr.Textbox(
label="Activity",
placeholder="e.g., 9 AM: Excavation, 10 AM: Concreting",
value="9 AM: Excavation, 10 AM: Concreting",
lines=3
)
media_source = gr.Radio(["Local File", "Azure Blob"], label="Media Source", value="Local File")
local_file = gr.File(label="Upload Image/Video", file_types=["image", "video"], visible=True)
azure_blob = gr.Dropdown(label="Select Video from Azure", choices=blob_names, visible=False)
submit_btn = gr.Button("Submit", variant="primary")
# Model Detection Column
with gr.Column():
gr.Markdown("### Model Detection")
model_day = gr.Textbox(label="Day")
model_date = gr.Textbox(label="Date")
model_people = gr.Textbox(label="Total Number of People")
model_machinery = gr.Textbox(label="Total Number of Machinery")
model_machinery_types = gr.Textbox(label="Number of Machinery Per Type")
# Activity Row with Timestamps
with gr.Row():
gr.Markdown("#### Activities with Timestamps")
model_activities = gr.Dataframe(
headers=["Time", "Activity Description"],
datatype=["str", "str"],
label="Detected Activities",
interactive=False,
wrap=True
)
# Activity timeline section
with gr.Row():
# Timeline View (default visible)
with gr.Column(visible=True) as timeline_view:
activity_gallery = gr.Gallery(label="Activity Timeline")
model_annotated_video = gr.Video(label="Full Video")
# Chat View (initially hidden)
with gr.Column(visible=False) as chat_view:
chunk_video = gr.Video(label="Chunk video")
chatbot = gr.Chatbot(height=400)
chat_input = gr.Textbox(
placeholder="Ask about this video segment...",
show_label=False
)
back_btn = gr.Button("← Back to Timeline")
# Update visibility based on media source
def update_visibility(source):
if source == "Local File":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
media_source.change(fn=update_visibility, inputs=media_source, outputs=[local_file, azure_blob])
# Connect the submit button to the processing function
submit_btn.click(
fn=process_diary,
inputs=[day, date, total_people, total_machinery, machinery_types, activities, media_source, local_file, azure_blob],
outputs=[
model_day,
model_date,
model_people,
model_machinery,
model_machinery_types,
timeline_view,
model_annotated_video,
activity_data,
chatbot,
model_activities
]
)
# Process activity data into gallery
activity_data.change(
fn=create_activity_cards_ui,
inputs=[activity_data],
outputs=[activity_gallery, activity_indices]
)
# Handle gallery selection
activity_gallery.select(
fn=on_card_click,
inputs=[activity_indices, chatbot],
outputs=[timeline_view, chat_view, chatbot, chunk_video]
)
# Chat submission
chat_input.submit(
fn=chat_with_video,
inputs=[chat_input, chatbot],
outputs=[chatbot]
)
# Back button
back_btn.click(
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
inputs=None,
outputs=[timeline_view, chat_view]
)
# Add enhanced CSS styling
gr.HTML("""
<style>
/* Gallery customizations */
.gradio-container .gallery-item {
border: 1px solid #444444 !important;
border-radius: 8px !important;
padding: 8px !important;
margin: 10px !important;
cursor: pointer !important;
transition: all 0.3s !important;
background: #18181b !important;
box-shadow: 0 2px 5px rgba(0,0,0,0.2) !important;
}
.gradio-container .gallery-item:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(0,0,0,0.25) !important;
border-color: #007bff !important;
background: #202025 !important;
}
.gradio-container .gallery-item.selected {
border: 2px solid #007bff !important;
background: #202030 !important;
}
/* Improved image display */
.gradio-container .gallery-item img {
height: 180px !important;
object-fit: cover !important;
border-radius: 4px !important;
border: 1px solid #444444 !important;
margin-bottom: 8px !important;
}
/* Caption styling */
.gradio-container .caption {
color: #e0e0e0 !important;
font-size: 0.9em !important;
margin-top: 8px !important;
line-height: 1.4 !important;
padding: 0 4px !important;
}
/* Gallery container */
.gradio-container [id*='gallery'] > div:first-child {
background-color: #27272a !important;
padding: 15px !important;
border-radius: 10px !important;
}
/* Chatbot styling */
.gradio-container .chatbot {
background-color: #27272a !important;
border-radius: 10px !important;
border: 1px solid #444444 !important;
}
.gradio-container .chatbot .message.user {
background-color: #18181b !important;
border-radius: 8px !important;
}
.gradio-container .chatbot .message.bot {
background-color: #202030 !important;
border-radius: 8px !important;
}
/* Button styling */
.gradio-container button.secondary {
background-color: #3d4452 !important;
color: white !important;
}
</style>
""")
if __name__ == "__main__":
demo.launch(allowed_paths=["./tmp"], share=True)
|