Spaces:
Sleeping
Sleeping
File size: 12,274 Bytes
815427b 390fae8 815427b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from ultralytics import YOLO
import cv2
import numpy as np
import tempfile
import os
# Initialize YOLO model
YOLO_MODEL = YOLO('./best_yolov11.pt')
def detect_people_and_machinery(media_path):
"""Detect people and machinery using YOLOv11 for both images and videos"""
try:
# Initialize counters with maximum values
max_people_count = 0
max_machine_types = {
"Tower Crane": 0,
"Mobile Crane": 0,
"Compactor/Roller": 0,
"Bulldozer": 0,
"Excavator": 0,
"Dump Truck": 0,
"Concrete Mixer": 0,
"Loader": 0,
"Pump Truck": 0,
"Pile Driver": 0,
"Grader": 0,
"Other Vehicle": 0
}
# Check if input is video
if isinstance(media_path, str) and is_video(media_path):
cap = cv2.VideoCapture(media_path)
fps = cap.get(cv2.CAP_PROP_FPS)
sample_rate = max(1, int(fps)) # Sample 1 frame per second
frame_count = 0 # Initialize frame counter
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process every nth frame based on sample rate
if frame_count % sample_rate == 0:
results = YOLO_MODEL(frame)
people, _, machine_types = process_yolo_results(results)
# Update maximum counts
max_people_count = max(max_people_count, people)
for k, v in machine_types.items():
max_machine_types[k] = max(max_machine_types[k], v)
frame_count += 1
cap.release()
else:
# Handle single image
if isinstance(media_path, str):
img = cv2.imread(media_path)
else:
# Handle PIL Image
img = cv2.cvtColor(np.array(media_path), cv2.COLOR_RGB2BGR)
results = YOLO_MODEL(img)
max_people_count, _, max_machine_types = process_yolo_results(results)
# Filter out machinery types with zero count
max_machine_types = {k: v for k, v in max_machine_types.items() if v > 0}
total_machinery_count = sum(max_machine_types.values())
return max_people_count, total_machinery_count, max_machine_types
except Exception as e:
print(f"Error in YOLO detection: {str(e)}")
return 0, 0, {}
def process_yolo_results(results):
"""Process YOLO detection results and count people and machinery"""
people_count = 0
machine_types = {
"Tower Crane": 0,
"Mobile Crane": 0,
"Compactor/Roller": 0,
"Bulldozer": 0,
"Excavator": 0,
"Dump Truck": 0,
"Concrete Mixer": 0,
"Loader": 0,
"Pump Truck": 0,
"Pile Driver": 0,
"Grader": 0,
"Other Vehicle": 0
}
# Process detection results
for r in results:
boxes = r.boxes
for box in boxes:
cls = int(box.cls[0])
conf = float(box.conf[0])
class_name = YOLO_MODEL.names[cls]
# Count people (Worker class)
if class_name.lower() == 'worker' and conf > 0.5:
people_count += 1
# Map YOLO classes to machinery types
machinery_mapping = {
'tower_crane': "Tower Crane",
'mobile_crane': "Mobile Crane",
'compactor': "Compactor/Roller",
'roller': "Compactor/Roller",
'bulldozer': "Bulldozer",
'dozer': "Bulldozer",
'excavator': "Excavator",
'dump_truck': "Dump Truck",
'truck': "Dump Truck",
'concrete_mixer_truck': "Concrete Mixer",
'loader': "Loader",
'pump_truck': "Pump Truck",
'pile_driver': "Pile Driver",
'grader': "Grader",
'other_vehicle': "Other Vehicle"
}
# Count machinery
if conf > 0.5:
class_lower = class_name.lower()
for key, value in machinery_mapping.items():
if key in class_lower:
machine_types[value] += 1
break
total_machinery = sum(machine_types.values())
return people_count, total_machinery, machine_types
def annotate_video_with_bboxes(video_path):
"""
Reads the entire video frame-by-frame, runs YOLO, draws bounding boxes,
writes a per-frame summary of detected classes on the frame, and saves
as a new annotated video. Returns: annotated_video_path
"""
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create a temp file for output
out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
annotated_video_path = out_file.name
out_file.close()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(annotated_video_path, fourcc, fps, (w, h))
while True:
ret, frame = cap.read()
if not ret:
break
results = YOLO_MODEL(frame)
# Dictionary to hold per-frame counts of each class
frame_counts = {}
for r in results:
boxes = r.boxes
for box in boxes:
cls_id = int(box.cls[0])
conf = float(box.conf[0])
if conf < 0.5:
continue # Skip low-confidence
x1, y1, x2, y2 = box.xyxy[0]
class_name = YOLO_MODEL.names[cls_id]
# Convert to int
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
# Draw bounding box
color = (0, 255, 0)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
label_text = f"{class_name} {conf:.2f}"
cv2.putText(frame, label_text, (x1, y1 - 6),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
# Increment per-frame class count
frame_counts[class_name] = frame_counts.get(class_name, 0) + 1
# Build a summary line, e.g. "Worker: 2, Excavator: 1, ..."
summary_str = ", ".join(f"{cls_name}: {count}"
for cls_name, count in frame_counts.items())
# Put the summary text in the top-left
cv2.putText(
frame,
summary_str,
(15, 30), # position
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(255, 255, 0),
2
)
writer.write(frame)
cap.release()
writer.release()
return annotated_video_path
def process_video_unified(media_path):
"""
Single pass YOLO processing for video.
Detects people/machinery, calculates max counts, and generates an annotated video.
Returns: max_people_count, total_machinery_count, max_machine_types, annotated_video_path
"""
max_people_count = 0
max_machine_types = {
"Tower Crane": 0, "Mobile Crane": 0, "Compactor/Roller": 0, "Bulldozer": 0,
"Excavator": 0, "Dump Truck": 0, "Concrete Mixer": 0, "Loader": 0,
"Pump Truck": 0, "Pile Driver": 0, "Grader": 0, "Other Vehicle": 0
}
annotated_video_path = None
try:
cap = cv2.VideoCapture(media_path)
if not cap.isOpened():
print(f"Error: Could not open video file {media_path}")
return 0, 0, {}, None
fps = cap.get(cv2.CAP_PROP_FPS)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
sample_rate = max(1, int(fps)) # Sample 1 frame per second
frame_count = 0
# Create a temp file for output annotated video
out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
annotated_video_path = out_file.name
out_file.close()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(annotated_video_path, fourcc, fps, (w, h))
while True:
ret, frame = cap.read()
if not ret:
break
# Process every nth frame based on sample rate for stats, but annotate every frame
if frame_count % sample_rate == 0:
results = YOLO_MODEL(frame) # Run detection
# --- Calculate Max Counts ---
people, _, machine_types = process_yolo_results(results)
max_people_count = max(max_people_count, people)
for k, v in machine_types.items():
if k in max_machine_types: # Ensure key exists
max_machine_types[k] = max(max_machine_types.get(k, 0), v)
# --- Annotate Frame (using the same results) ---
frame_counts = {} # For summary text on this frame
annotated_frame = frame.copy() # Work on a copy for annotation
for r in results:
boxes = r.boxes
for box in boxes:
cls_id = int(box.cls[0])
conf = float(box.conf[0])
if conf < 0.5: continue
x1, y1, x2, y2 = map(int, box.xyxy[0])
class_name = YOLO_MODEL.names[cls_id]
# Draw bounding box
color = (0, 255, 0)
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color, 2)
label_text = f"{class_name} {conf:.2f}"
cv2.putText(annotated_frame, label_text, (x1, y1 - 6),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# Increment per-frame class count for summary
frame_counts[class_name] = frame_counts.get(class_name, 0) + 1
# Build and draw summary string for the frame
summary_str = ", ".join(f"{cls}: {cnt}" for cls, cnt in frame_counts.items())
cv2.putText(annotated_frame, summary_str, (15, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 0), 2)
writer.write(annotated_frame) # Write annotated frame
else:
# If not sampling this frame for stats, still write original frame to keep video length correct
# Or optionally, run detection+annotation anyway if performance allows and annotation is desired for all frames
# For now, let's just write the original frame to maintain sync
writer.write(frame)
frame_count += 1
cap.release()
writer.release()
# Filter out zero counts from max_machine_types
max_machine_types = {k: v for k, v in max_machine_types.items() if v > 0}
total_machinery_count = sum(max_machine_types.values())
print(f"Unified processing complete. People: {max_people_count}, Machinery: {total_machinery_count}, Types: {max_machine_types}")
return max_people_count, total_machinery_count, max_machine_types, annotated_video_path
except Exception as e:
print(f"Error in unified YOLO video processing: {str(e)}")
# Clean up potentially created temp file on error
if annotated_video_path and os.path.exists(annotated_video_path):
try:
os.remove(annotated_video_path)
except OSError:
pass # Ignore error during cleanup
return 0, 0, {}, None
# File type validation
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
def get_file_extension(filename):
return os.path.splitext(filename)[1].lower()
def is_image(filename):
return get_file_extension(filename) in IMAGE_EXTENSIONS
def is_video(filename):
return get_file_extension(filename) in VIDEO_EXTENSIONS
|