V3Test / app.py
assentian1970's picture
Update app.py
6c50846 verified
raw
history blame
25.9 kB
import spaces
import gradio as gr
from datetime import datetime
import tempfile
import os
import json
import torch
import gc
import shutil # Added for directory cleanup
from azure.storage.blob import BlobServiceClient # Added for Azure integration
def debug():
torch.randn(10).cuda()
debug()
from PIL import Image
from decord import VideoReader, cpu
from yolo_detection import (
detect_people_and_machinery, # Keep for images
# annotate_video_with_bboxes, # Replaced by unified function
process_video_unified, # Import the new unified function
is_image,
is_video
)
from image_captioning import (
analyze_image_activities,
analyze_video_activities,
process_video_chunk,
load_model_and_tokenizer,
MAX_NUM_FRAMES
)
# Load model instance once
gc.collect()
torch.cuda.empty_cache()
model, tokenizer, processor = load_model_and_tokenizer()
print("Model loaded.")
# Azure Blob Storage Setup
CONTAINER_NAME = "logs" # Replace with your actual container name
connection_string = "BlobEndpoint=https://assentian.blob.core.windows.net/;QueueEndpoint=https://assentian.queue.core.windows.net/;FileEndpoint=https://assentian.file.core.windows.net/;TableEndpoint=https://assentian.table.core.windows.net/;SharedAccessSignature=sv=2024-11-04&ss=bfqt&srt=sco&sp=rwdlacupiytfx&se=2025-04-30T17:16:18Z&st=2025-04-22T09:16:18Z&spr=https&sig=AkJb79C%2FJ0G1HqfotIYuSfm%2Fb%2BQ2E%2FjvxV3ZG7ejVQo%3D"
if not connection_string:
print("Warning: AZURE_STORAGE_CONNECTION_STRING not found. Azure Blob functionality will be disabled.")
# Initialize Azure Blob Service Client if connection string is available
blob_service_client = None
if connection_string:
try:
blob_service_client = BlobServiceClient.from_connection_string(connection_string)
print("Azure Blob Service Client initialized successfully.")
except Exception as e:
print(f"Error initializing BlobServiceClient: {str(e)}")
blob_service_client = None
def list_blobs():
"""List video blobs in the specified Azure container."""
if not blob_service_client:
print("Cannot list blobs: BlobServiceClient is not initialized.")
return []
try:
container_client = blob_service_client.get_container_client(CONTAINER_NAME)
blobs = container_client.list_blobs()
video_extensions = ['.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v']
blob_list = [blob.name for blob in blobs if any(blob.name.lower().endswith(ext) for ext in video_extensions)]
print(f"Found {len(blob_list)} video blobs in container '{CONTAINER_NAME}': {blob_list}")
return blob_list
except Exception as e:
print(f"Error listing blobs in container '{CONTAINER_NAME}': {str(e)}")
return []
# Fetch blob names at startup
blob_names = list_blobs()
print(f"Populated azure_blob dropdown with {len(blob_names)} options.")
# Global storage for activities and media paths
global_activities = []
global_media_path = None
global_temp_media_path = None # Store path if downloaded from Azure for cleanup
# Create tmp directory for storing frames
tmp_dir = os.path.join('.', 'tmp')
os.makedirs(tmp_dir, exist_ok=True)
@spaces.GPU
def process_diary(day, date, total_people, total_machinery, machinery_types, activities, media_source, local_file, azure_blob):
"""Process the site diary entry with media from local file or Azure Blob Storage."""
global global_activities, global_media_path, global_temp_media_path
global_temp_media_path = None # Reset before processing
if media_source == "Local File":
if local_file is None:
return [day, date, "No media uploaded", "No media uploaded", "No media uploaded", None, None, [], None, []]
media_path = local_file # local_file is a string path in Gradio
print(f"Processing local file: {media_path}")
else: # Azure Blob
if not azure_blob or not blob_service_client:
return [day, date, "No blob selected or Azure not configured", "No blob selected or Azure not configured",
"No blob selected or Azure not configured", None, None, [], None, []]
try:
blob_client = blob_service_client.get_blob_client(container=CONTAINER_NAME, blob=azure_blob)
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(azure_blob)[1]) as temp_file:
temp_path = temp_file.name
blob_data = blob_client.download_blob()
blob_data.readinto(temp_file)
media_path = temp_path
global_temp_media_path = media_path # Store for cleanup
print(f"Downloaded Azure blob '{azure_blob}' to temporary file: {media_path}")
except Exception as e:
print(f"Error downloading blob '{azure_blob}': {str(e)}")
return [day, date, "Error downloading blob", "Error downloading blob", "Error downloading blob", None, None, [], None, []]
# Ensure cleanup happens even on error
try:
file_ext = get_file_extension(media_path)
if not (is_image(media_path) or is_video(media_path)):
raise ValueError(f"Unsupported file type: {file_ext}")
annotated_video_path = None # Initialize
if is_image(media_path):
# Process image with original function
detected_people, detected_machinery, detected_machinery_types = detect_people_and_machinery(media_path)
detected_activities = analyze_image_activities(media_path)
else: # It's a video
# Process video with the unified function
print("Processing video with unified YOLO function...")
detected_people, detected_machinery, detected_machinery_types, annotated_video_path = process_video_unified(media_path)
print(f"Unified YOLO results - People: {detected_people}, Machinery: {detected_machinery}, Types: {detected_machinery_types}, Annotated Video: {annotated_video_path}")
# Now analyze activities
detected_activities = analyze_video_activities(media_path, model, tokenizer, processor)
# Debug the detected activities
print(f"Detected activities (raw): {detected_activities}")
print(f"Type of detected_activities: {type(detected_activities)}")
# Ensure detected_activities is a list of dictionaries
if isinstance(detected_activities, str):
print("Warning: detected_activities is a string, converting to list of dicts.")
detected_activities = [{"time": "Unknown", "summary": detected_activities}]
elif not isinstance(detected_activities, list):
print("Warning: detected_activities is not a list, wrapping in a list.")
detected_activities = [{"time": "Unknown", "summary": str(detected_activities)}]
# Validate each activity
for activity in detected_activities:
if not isinstance(activity, dict):
print(f"Warning: Invalid activity format: {activity}, converting.")
activity = {"time": "Unknown", "summary": str(activity)}
print(f"Processed detected_activities: {detected_activities}")
# Store activities and media path globally for chat mode
global_activities = detected_activities
global_media_path = media_path
# The annotation is now handled within process_video_unified for videos
# if is_video(media_path):
# annotated_video_path = annotate_video_with_bboxes(media_path) # Removed duplicate call
# print(f"Generated annotated video: {annotated_video_path}")
# Clean up temporary file if downloaded from Azure - This is now handled in the finally block
# if media_source == "Azure Blob" and os.path.exists(media_path):
# os.remove(media_path)
# print(f"Cleaned up temporary file: {media_path}")
detected_types_str = ", ".join([f"{k}: {v}" for k, v in detected_machinery_types.items()])
# The cleanup for Azure temp files is now handled in the finally block
# os.remove(media_path)
# print(f"Cleaned up temporary file: {media_path}")
# We'll return the activities as a list for the card display
# Clear the chat history when loading new media
chat_history = []
# Extract data for the activity table
activity_rows = []
for activity in detected_activities:
time = activity.get('time', 'Unknown')
summary = activity.get('summary', 'No description available')
activity_rows.append([time, summary])
print(f"Activity rows for Dataframe: {activity_rows}")
return [day, date, str(detected_people), str(detected_machinery),
detected_types_str, gr.update(visible=True), annotated_video_path,
detected_activities, chat_history, activity_rows]
except Exception as e:
print(f"Error processing media: {str(e)}")
# Cleanup is handled in finally block now
# if media_source == "Azure Blob" and os.path.exists(media_path):
# os.remove(media_path)
# print(f"Cleaned up temporary file due to error: {media_path}")
return [day, date, "Error processing media", "Error processing media",
"Error processing media", None, None, [], None, []]
finally:
# Cleanup temporary files and GPU memory
print("Running cleanup...")
if global_temp_media_path and os.path.exists(global_temp_media_path):
try:
os.remove(global_temp_media_path)
print(f"Cleaned up temporary Azure file: {global_temp_media_path}")
except OSError as e:
print(f"Error removing temporary Azure file {global_temp_media_path}: {e}")
# Clear GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print("Cleared GPU cache.")
def get_file_extension(filename):
return os.path.splitext(filename)[1].lower()
def on_card_click(activity_indices, history, evt: gr.SelectData):
"""Handle clicking on an activity card in the gallery"""
global global_activities, global_media_path
# Get the index of the selected activity from the SelectData event
selected_idx = evt.index
# Map the gallery index to the actual activity index
if selected_idx < 0 or selected_idx >= len(activity_indices):
return [gr.update(visible=True), gr.update(visible=False), [], None]
card_idx = activity_indices[selected_idx]
print(f"Gallery item {selected_idx} clicked, corresponds to activity index: {card_idx}")
if card_idx < 0 or card_idx >= len(global_activities):
return [gr.update(visible=True), gr.update(visible=False), [], None]
selected_activity = global_activities[card_idx]
chunk_video_path = None
# Use the pre-saved chunk video if available
if 'chunk_path' in selected_activity and os.path.exists(selected_activity['chunk_path']):
chunk_video_path = selected_activity['chunk_path']
print(f"Using pre-saved chunk video: {chunk_video_path}")
else:
# Fallback to full video if chunk not available
chunk_video_path = global_media_path
print(f"Chunk video not available, using full video: {chunk_video_path}")
# Add the selected activity to chat history
history = []
history.append((None, f"🎬 Selected video at timestamp {selected_activity['time']}"))
# Add the thumbnail to the chat as a visual element
if 'thumbnail' in selected_activity and os.path.exists(selected_activity['thumbnail']):
# Use the tuple format for images in chatbot
thumbnail_path = selected_activity['thumbnail']
history.append((None, f"📷 Video frame at {selected_activity['time']}"))
history.append((None, thumbnail_path))
# Format message about the detected activity
activity_info = f"I detected the following activity:\n\n{selected_activity['summary']}"
if selected_activity['objects']:
activity_info += f"\n\nIdentified objects: {', '.join(selected_activity['objects'])}"
history.append(("Tell me about this video segment", activity_info))
return [gr.update(visible=False), gr.update(visible=True), history, chunk_video_path]
def chat_with_video(message, history):
"""Chat with the mPLUG model about the selected video segment"""
global global_activities, global_media_path
try:
# Get the selected activity from the history to identify which chunk we're discussing
selected_chunk_idx = None
selected_time = None
selected_activity = None
for entry in history:
if entry[0] is None and "Selected video at timestamp" in entry[1]:
time_str = entry[1].split("Selected video at timestamp ")[1]
selected_time = time_str.strip()
break
# Find the corresponding chunk
if selected_time:
for i, activity in enumerate(global_activities):
if activity.get('time') == selected_time:
selected_chunk_idx = activity.get('chunk_id')
selected_activity = activity
break
# If we found the chunk, use the model to analyze it
if selected_chunk_idx is not None and global_media_path and selected_activity:
# Generate prompt based on user question and add context about what's in the video
context = f"This video shows construction site activities at timestamp {selected_time}."
if selected_activity.get('objects'):
context += f" The scene contains {', '.join(selected_activity.get('objects'))}."
prompt = f"{context} Analyze this segment of construction site video and answer this question: {message}"
# This would ideally use the specific chunk, but for simplicity we'll use the global path
# In a production system, you'd extract just that chunk of the video
vr = VideoReader(global_media_path, ctx=cpu(0))
# Get the frames for this chunk
sample_fps = round(vr.get_avg_fps() / 1)
frame_idx = [i for i in range(0, len(vr), sample_fps)]
# Extract frames for the specific chunk
chunk_size = MAX_NUM_FRAMES
start_idx = selected_chunk_idx * chunk_size
end_idx = min(start_idx + chunk_size, len(frame_idx))
chunk_frames = frame_idx[start_idx:end_idx]
if chunk_frames:
frames = vr.get_batch(chunk_frames).asnumpy()
frames_pil = [Image.fromarray(v.astype('uint8')) for v in frames]
# Process frames with model
response = process_video_chunk(frames_pil, model, tokenizer, processor, prompt)
return history + [(message, response)]
else:
return history + [(message, "Could not extract frames for this segment.")]
else:
# Fallback response if we can't identify the chunk
thumbnail = None
response_text = f"I'm analyzing your question about the video segment: {message}\n\nBased on what I can see in this segment, it appears to show construction activity with various machinery and workers on site. The specific details would depend on the exact timestamp you're referring to."
# Try to get a thumbnail from the selected activity if available
if selected_activity and 'thumbnail' in selected_activity and os.path.exists(selected_activity['thumbnail']):
thumbnail = selected_activity['thumbnail']
new_history = history + [(message, response_text)]
new_history.append((None, f"📷 Video frame at {selected_time}"))
new_history.append((None, thumbnail))
return new_history
return history + [(message, response_text)]
except Exception as e:
print(f"Error in chat_with_video: {str(e)}")
return history + [(message, f"I encountered an error while processing your question. Let me try to answer based on what I can see: {message}\n\nThe video appears to show construction site activities, but I'm having trouble with the detailed analysis at the moment.")]
# Native Gradio activity cards
def create_activity_cards_ui(activities):
"""Create activity cards using native Gradio components"""
if not activities:
return gr.HTML("<div class='activity-timeline'><h3>No activities detected</h3></div>"), []
# Prepare data for gallery
thumbnails = []
captions = []
activity_indices = []
for i, activity in enumerate(activities):
thumbnail = activity.get('thumbnail', '')
time = activity.get('time', 'Unknown')
summary = activity.get('summary', 'No description available')
objects_list = activity.get('objects', [])
objects_text = f"Objects: {', '.join(objects_list)}" if objects_list else ""
# Truncate summary if too long
if len(summary) > 150:
summary = summary[:147] + "..."
thumbnails.append(thumbnail)
captions.append(f"Timestamp: {time} | {summary}")
activity_indices.append(i)
# Create a gallery for the thumbnails
gallery = gr.Gallery(
value=[(path, caption) for path, caption in zip(thumbnails, captions)],
columns=5,
rows=None,
height="auto",
object_fit="contain",
label="Activity Timeline"
)
return gallery, activity_indices
# Create the Gradio interface
with gr.Blocks(title="Digital Site Diary", css="") as demo:
gr.Markdown("# 📝 Digital Site Diary")
# Activity data and indices storage
activity_data = gr.State([])
activity_indices = gr.State([])
# Create tabs for different views
with gr.Tabs() as tabs:
with gr.Tab("Site Diary"):
with gr.Row():
# User Input Column
with gr.Column():
gr.Markdown("### User Input")
day = gr.Textbox(label="Day", value='9')
date = gr.Textbox(label="Date", placeholder="YYYY-MM-DD", value=datetime.now().strftime("%Y-%m-%d"))
total_people = gr.Number(label="Total Number of People", precision=0, value=10)
total_machinery = gr.Number(label="Total Number of Machinery", precision=0, value=3)
machinery_types = gr.Textbox(
label="Number of Machinery Per Type",
placeholder="e.g., Excavator: 2, Roller: 1",
value="Excavator: 2, Roller: 1"
)
activities = gr.Textbox(
label="Activity",
placeholder="e.g., 9 AM: Excavation, 10 AM: Concreting",
value="9 AM: Excavation, 10 AM: Concreting",
lines=3
)
media_source = gr.Radio(["Local File", "Azure Blob"], label="Media Source", value="Local File")
local_file = gr.File(label="Upload Image/Video", file_types=["image", "video"], visible=True)
azure_blob = gr.Dropdown(label="Select Video from Azure", choices=blob_names, visible=False)
submit_btn = gr.Button("Submit", variant="primary")
# Model Detection Column
with gr.Column():
gr.Markdown("### Model Detection")
model_day = gr.Textbox(label="Day")
model_date = gr.Textbox(label="Date")
model_people = gr.Textbox(label="Total Number of People")
model_machinery = gr.Textbox(label="Total Number of Machinery")
model_machinery_types = gr.Textbox(label="Number of Machinery Per Type")
# Activity Row with Timestamps
with gr.Row():
gr.Markdown("#### Activities with Timestamps")
model_activities = gr.Dataframe(
headers=["Time", "Activity Description"],
datatype=["str", "str"],
label="Detected Activities",
interactive=False,
wrap=True
)
# Activity timeline section
with gr.Row():
# Timeline View (default visible)
with gr.Column(visible=True) as timeline_view:
activity_gallery = gr.Gallery(label="Activity Timeline")
model_annotated_video = gr.Video(label="Full Video")
# Chat View (initially hidden)
with gr.Column(visible=False) as chat_view:
chunk_video = gr.Video(label="Chunk video")
chatbot = gr.Chatbot(height=400)
chat_input = gr.Textbox(
placeholder="Ask about this video segment...",
show_label=False
)
back_btn = gr.Button("← Back to Timeline")
# Update visibility based on media source
def update_visibility(source):
if source == "Local File":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
media_source.change(fn=update_visibility, inputs=media_source, outputs=[local_file, azure_blob])
# Connect the submit button to the processing function
submit_btn.click(
fn=process_diary,
inputs=[day, date, total_people, total_machinery, machinery_types, activities, media_source, local_file, azure_blob],
outputs=[
model_day,
model_date,
model_people,
model_machinery,
model_machinery_types,
timeline_view,
model_annotated_video,
activity_data,
chatbot,
model_activities
]
)
# Process activity data into gallery
activity_data.change(
fn=create_activity_cards_ui,
inputs=[activity_data],
outputs=[activity_gallery, activity_indices]
)
# Handle gallery selection
activity_gallery.select(
fn=on_card_click,
inputs=[activity_indices, chatbot],
outputs=[timeline_view, chat_view, chatbot, chunk_video]
)
# Chat submission
chat_input.submit(
fn=chat_with_video,
inputs=[chat_input, chatbot],
outputs=[chatbot]
)
# Back button
back_btn.click(
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
inputs=None,
outputs=[timeline_view, chat_view]
)
# Add enhanced CSS styling
gr.HTML("""
<style>
/* Gallery customizations */
.gradio-container .gallery-item {
border: 1px solid #444444 !important;
border-radius: 8px !important;
padding: 8px !important;
margin: 10px !important;
cursor: pointer !important;
transition: all 0.3s !important;
background: #18181b !important;
box-shadow: 0 2px 5px rgba(0,0,0,0.2) !important;
}
.gradio-container .gallery-item:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(0,0,0,0.25) !important;
border-color: #007bff !important;
background: #202025 !important;
}
.gradio-container .gallery-item.selected {
border: 2px solid #007bff !important;
background: #202030 !important;
}
/* Improved image display */
.gradio-container .gallery-item img {
height: 180px !important;
object-fit: cover !important;
border-radius: 4px !important;
border: 1px solid #444444 !important;
margin-bottom: 8px !important;
}
/* Caption styling */
.gradio-container .caption {
color: #e0e0e0 !important;
font-size: 0.9em !important;
margin-top: 8px !important;
line-height: 1.4 !important;
padding: 0 4px !important;
}
/* Gallery container */
.gradio-container [id*='gallery'] > div:first-child {
background-color: #27272a !important;
padding: 15px !important;
border-radius: 10px !important;
}
/* Chatbot styling */
.gradio-container .chatbot {
background-color: #27272a !important;
border-radius: 10px !important;
border: 1px solid #444444 !important;
}
.gradio-container .chatbot .message.user {
background-color: #18181b !important;
border-radius: 8px !important;
}
.gradio-container .chatbot .message.bot {
background-color: #202030 !important;
border-radius: 8px !important;
}
/* Button styling */
.gradio-container button.secondary {
background-color: #3d4452 !important;
color: white !important;
}
</style>
""")
if __name__ == "__main__":
demo.launch(allowed_paths=["./tmp"], share=True)