Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +573 -0
- best_yolov11.pt +3 -0
- requirements.txt +26 -0
app.py
ADDED
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import torch
|
3 |
+
@spaces.GPU
|
4 |
+
def debug():
|
5 |
+
torch.randn(10).cuda()
|
6 |
+
debug()
|
7 |
+
import argparse
|
8 |
+
from transformers import AutoModel, AutoTokenizer
|
9 |
+
from modelscope.hub.snapshot_download import snapshot_download
|
10 |
+
from PIL import Image
|
11 |
+
from decord import VideoReader, cpu
|
12 |
+
import io
|
13 |
+
import os
|
14 |
+
os.system("nvidia-smi")
|
15 |
+
import copy
|
16 |
+
import requests
|
17 |
+
import base64
|
18 |
+
import json
|
19 |
+
import traceback
|
20 |
+
import re
|
21 |
+
import gc
|
22 |
+
import random
|
23 |
+
import io
|
24 |
+
import tempfile
|
25 |
+
from ultralytics import YOLO
|
26 |
+
import numpy as np
|
27 |
+
import cv2
|
28 |
+
import gradio as gr
|
29 |
+
from datetime import datetime
|
30 |
+
|
31 |
+
# Add this after other model configurations
|
32 |
+
YOLO_MODEL = YOLO('./best_yolov11.pt') # Load YOLOv11 model
|
33 |
+
|
34 |
+
# Check if CUDA is available
|
35 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
|
37 |
+
# Initialize GPU if available
|
38 |
+
if DEVICE == "cuda":
|
39 |
+
def debug():
|
40 |
+
torch.randn(10).cuda()
|
41 |
+
debug()
|
42 |
+
|
43 |
+
# File type validation
|
44 |
+
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
|
45 |
+
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
|
46 |
+
|
47 |
+
def get_file_extension(filename):
|
48 |
+
return os.path.splitext(filename)[1].lower()
|
49 |
+
|
50 |
+
def is_image(filename):
|
51 |
+
return get_file_extension(filename) in IMAGE_EXTENSIONS
|
52 |
+
|
53 |
+
def is_video(filename):
|
54 |
+
return get_file_extension(filename) in VIDEO_EXTENSIONS
|
55 |
+
|
56 |
+
# Argparser
|
57 |
+
parser = argparse.ArgumentParser(description='demo')
|
58 |
+
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
|
59 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
60 |
+
parser.add_argument("--port", type=int)
|
61 |
+
args = parser.parse_args()
|
62 |
+
device = args.device
|
63 |
+
assert device in ['cuda', 'mps']
|
64 |
+
|
65 |
+
# Model configuration
|
66 |
+
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
|
67 |
+
MODEL_CACHE_DIR = os.getenv('TRANSFORMERS_CACHE', './models')
|
68 |
+
|
69 |
+
# Create cache directory if it doesn't exist
|
70 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
71 |
+
|
72 |
+
# Download and cache the model
|
73 |
+
try:
|
74 |
+
model_path = snapshot_download(MODEL_NAME, cache_dir=MODEL_CACHE_DIR)
|
75 |
+
except Exception as e:
|
76 |
+
print(f"Error downloading model: {str(e)}")
|
77 |
+
model_path = os.path.join(MODEL_CACHE_DIR, MODEL_NAME)
|
78 |
+
|
79 |
+
MAX_NUM_FRAMES = 64
|
80 |
+
|
81 |
+
def load_model_and_tokenizer():
|
82 |
+
"""Load a fresh instance of the model and tokenizer"""
|
83 |
+
try:
|
84 |
+
# Clear GPU memory if using CUDA
|
85 |
+
if DEVICE == "cuda":
|
86 |
+
torch.cuda.empty_cache()
|
87 |
+
gc.collect()
|
88 |
+
|
89 |
+
model = AutoModel.from_pretrained(
|
90 |
+
model_path,
|
91 |
+
attn_implementation='flash_attention_2',
|
92 |
+
trust_remote_code=True,
|
93 |
+
torch_dtype= torch.half,
|
94 |
+
device_map='auto'
|
95 |
+
)
|
96 |
+
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
98 |
+
model_path,
|
99 |
+
trust_remote_code=True
|
100 |
+
)
|
101 |
+
model.eval()
|
102 |
+
processor = model.init_processor(tokenizer)
|
103 |
+
return model, tokenizer, processor
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error loading model: {str(e)}")
|
106 |
+
raise
|
107 |
+
|
108 |
+
def process_video_chunk(video_frames, model, tokenizer, processor, prompt):
|
109 |
+
"""Process a chunk of video frames with mPLUG model"""
|
110 |
+
messages = [
|
111 |
+
{
|
112 |
+
"role": "user",
|
113 |
+
"content": prompt,
|
114 |
+
"video_frames": video_frames
|
115 |
+
}
|
116 |
+
]
|
117 |
+
|
118 |
+
model_messages = []
|
119 |
+
videos = []
|
120 |
+
|
121 |
+
for msg in messages:
|
122 |
+
content_str = msg["content"]
|
123 |
+
if "video_frames" in msg and msg["video_frames"]:
|
124 |
+
content_str += "<|video|>"
|
125 |
+
videos.append(msg["video_frames"])
|
126 |
+
model_messages.append({
|
127 |
+
"role": msg["role"],
|
128 |
+
"content": content_str
|
129 |
+
})
|
130 |
+
|
131 |
+
model_messages.append({
|
132 |
+
"role": "assistant",
|
133 |
+
"content": ""
|
134 |
+
})
|
135 |
+
|
136 |
+
inputs = processor(
|
137 |
+
model_messages,
|
138 |
+
images=None,
|
139 |
+
videos=videos if videos else None
|
140 |
+
)
|
141 |
+
inputs.to('cuda')
|
142 |
+
inputs.update({
|
143 |
+
'tokenizer': tokenizer,
|
144 |
+
'max_new_tokens': 100,
|
145 |
+
'decode_text': True,
|
146 |
+
})
|
147 |
+
|
148 |
+
response = model.generate(**inputs)
|
149 |
+
return response[0]
|
150 |
+
|
151 |
+
def encode_video_in_chunks(video_path):
|
152 |
+
"""Extract frames from a video in chunks"""
|
153 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
154 |
+
sample_fps = round(vr.get_avg_fps() / 1) # 1 FPS
|
155 |
+
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
156 |
+
|
157 |
+
# Split frame indices into chunks
|
158 |
+
chunks = [
|
159 |
+
frame_idx[i:i + MAX_NUM_FRAMES]
|
160 |
+
for i in range(0, len(frame_idx), MAX_NUM_FRAMES)
|
161 |
+
]
|
162 |
+
|
163 |
+
for chunk_idx, chunk in enumerate(chunks):
|
164 |
+
frames = vr.get_batch(chunk).asnumpy()
|
165 |
+
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
166 |
+
yield chunk_idx, frames
|
167 |
+
|
168 |
+
def detect_people_and_machinery(media_path):
|
169 |
+
"""Detect people and machinery using YOLOv11 for both images and videos"""
|
170 |
+
try:
|
171 |
+
# Initialize counters with maximum values
|
172 |
+
max_people_count = 0
|
173 |
+
max_machine_types = {
|
174 |
+
"Tower Crane": 0,
|
175 |
+
"Mobile Crane": 0,
|
176 |
+
"Compactor/Roller": 0,
|
177 |
+
"Bulldozer": 0,
|
178 |
+
"Excavator": 0,
|
179 |
+
"Dump Truck": 0,
|
180 |
+
"Concrete Mixer": 0,
|
181 |
+
"Loader": 0,
|
182 |
+
"Pump Truck": 0,
|
183 |
+
"Pile Driver": 0,
|
184 |
+
"Grader": 0,
|
185 |
+
"Other Vehicle": 0
|
186 |
+
}
|
187 |
+
|
188 |
+
# Check if input is video
|
189 |
+
if isinstance(media_path, str) and is_video(media_path):
|
190 |
+
cap = cv2.VideoCapture(media_path)
|
191 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
192 |
+
sample_rate = max(1, int(fps)) # Sample 1 frame per second
|
193 |
+
frame_count = 0 # Initialize frame counter
|
194 |
+
|
195 |
+
while cap.isOpened():
|
196 |
+
ret, frame = cap.read()
|
197 |
+
if not ret:
|
198 |
+
break
|
199 |
+
|
200 |
+
# Process every nth frame based on sample rate
|
201 |
+
if frame_count % sample_rate == 0:
|
202 |
+
results = YOLO_MODEL(frame)
|
203 |
+
people, _, machine_types = process_yolo_results(results)
|
204 |
+
|
205 |
+
# Update maximum counts
|
206 |
+
max_people_count = max(max_people_count, people)
|
207 |
+
for k, v in machine_types.items():
|
208 |
+
max_machine_types[k] = max(max_machine_types[k], v)
|
209 |
+
|
210 |
+
frame_count += 1
|
211 |
+
|
212 |
+
cap.release()
|
213 |
+
|
214 |
+
else:
|
215 |
+
# Handle single image
|
216 |
+
if isinstance(media_path, str):
|
217 |
+
img = cv2.imread(media_path)
|
218 |
+
else:
|
219 |
+
# Handle PIL Image
|
220 |
+
img = cv2.cvtColor(np.array(media_path), cv2.COLOR_RGB2BGR)
|
221 |
+
|
222 |
+
results = YOLO_MODEL(img)
|
223 |
+
max_people_count, _, max_machine_types = process_yolo_results(results)
|
224 |
+
|
225 |
+
# Filter out machinery types with zero count
|
226 |
+
max_machine_types = {k: v for k, v in max_machine_types.items() if v > 0}
|
227 |
+
total_machinery_count = sum(max_machine_types.values())
|
228 |
+
|
229 |
+
return max_people_count, total_machinery_count, max_machine_types
|
230 |
+
|
231 |
+
except Exception as e:
|
232 |
+
print(f"Error in YOLO detection: {str(e)}")
|
233 |
+
return 0, 0, {}
|
234 |
+
|
235 |
+
def process_yolo_results(results):
|
236 |
+
"""Process YOLO detection results and count people and machinery"""
|
237 |
+
people_count = 0
|
238 |
+
machine_types = {
|
239 |
+
"Tower Crane": 0,
|
240 |
+
"Mobile Crane": 0,
|
241 |
+
"Compactor/Roller": 0,
|
242 |
+
"Bulldozer": 0,
|
243 |
+
"Excavator": 0,
|
244 |
+
"Dump Truck": 0,
|
245 |
+
"Concrete Mixer": 0,
|
246 |
+
"Loader": 0,
|
247 |
+
"Pump Truck": 0,
|
248 |
+
"Pile Driver": 0,
|
249 |
+
"Grader": 0,
|
250 |
+
"Other Vehicle": 0
|
251 |
+
}
|
252 |
+
|
253 |
+
# Process detection results
|
254 |
+
for r in results:
|
255 |
+
boxes = r.boxes
|
256 |
+
for box in boxes:
|
257 |
+
cls = int(box.cls[0])
|
258 |
+
conf = float(box.conf[0])
|
259 |
+
class_name = YOLO_MODEL.names[cls]
|
260 |
+
|
261 |
+
# Count people (Worker class)
|
262 |
+
if class_name.lower() == 'worker' and conf > 0.5:
|
263 |
+
people_count += 1
|
264 |
+
|
265 |
+
# Map YOLO classes to machinery types
|
266 |
+
machinery_mapping = {
|
267 |
+
'tower_crane': "Tower Crane",
|
268 |
+
'mobile_crane': "Mobile Crane",
|
269 |
+
'compactor': "Compactor/Roller",
|
270 |
+
'roller': "Compactor/Roller",
|
271 |
+
'bulldozer': "Bulldozer",
|
272 |
+
'dozer': "Bulldozer",
|
273 |
+
'excavator': "Excavator",
|
274 |
+
'dump_truck': "Dump Truck",
|
275 |
+
'truck': "Dump Truck",
|
276 |
+
'concrete_mixer_truck': "Concrete Mixer",
|
277 |
+
'loader': "Loader",
|
278 |
+
'pump_truck': "Pump Truck",
|
279 |
+
'pile_driver': "Pile Driver",
|
280 |
+
'grader': "Grader",
|
281 |
+
'other_vehicle': "Other Vehicle"
|
282 |
+
}
|
283 |
+
|
284 |
+
# Count machinery
|
285 |
+
if conf > 0.5:
|
286 |
+
class_lower = class_name.lower()
|
287 |
+
for key, value in machinery_mapping.items():
|
288 |
+
if key in class_lower:
|
289 |
+
machine_types[value] += 1
|
290 |
+
break
|
291 |
+
|
292 |
+
total_machinery = sum(machine_types.values())
|
293 |
+
return people_count, total_machinery, machine_types
|
294 |
+
|
295 |
+
def analyze_video_activities(video_path):
|
296 |
+
"""Analyze video using mPLUG model with chunking"""
|
297 |
+
try:
|
298 |
+
all_responses = []
|
299 |
+
chunk_generator = encode_video_in_chunks(video_path)
|
300 |
+
|
301 |
+
for chunk_idx, video_frames in chunk_generator:
|
302 |
+
# Load fresh model instance for each chunk
|
303 |
+
model, tokenizer, processor = load_model_and_tokenizer()
|
304 |
+
|
305 |
+
# Process the chunk
|
306 |
+
prompt = "Analyze this construction site video chunk and describe the activities happening. Focus on construction activities, machinery usage, and worker actions."
|
307 |
+
response = process_video_chunk(video_frames, model, tokenizer, processor, prompt)
|
308 |
+
all_responses.append(f"Time period {chunk_idx + 1}:\n{response}")
|
309 |
+
|
310 |
+
# Clean up GPU memory
|
311 |
+
del model, tokenizer, processor
|
312 |
+
torch.cuda.empty_cache()
|
313 |
+
gc.collect()
|
314 |
+
|
315 |
+
# Combine all responses
|
316 |
+
return "\n\n".join(all_responses)
|
317 |
+
except Exception as e:
|
318 |
+
print(f"Error analyzing video: {str(e)}")
|
319 |
+
return "Error analyzing video activities"
|
320 |
+
|
321 |
+
def process_image(image_path, model, tokenizer, processor, prompt):
|
322 |
+
"""Process single image with mPLUG model"""
|
323 |
+
try:
|
324 |
+
image = Image.open(image_path)
|
325 |
+
messages = [{
|
326 |
+
"role": "user",
|
327 |
+
"content": prompt,
|
328 |
+
"images": [image]
|
329 |
+
}]
|
330 |
+
|
331 |
+
model_messages = []
|
332 |
+
images = []
|
333 |
+
|
334 |
+
for msg in messages:
|
335 |
+
content_str = msg["content"]
|
336 |
+
if "images" in msg and msg["images"]:
|
337 |
+
content_str += "<|image|>"
|
338 |
+
images.extend(msg["images"])
|
339 |
+
model_messages.append({
|
340 |
+
"role": msg["role"],
|
341 |
+
"content": content_str
|
342 |
+
})
|
343 |
+
|
344 |
+
model_messages.append({
|
345 |
+
"role": "assistant",
|
346 |
+
"content": ""
|
347 |
+
})
|
348 |
+
|
349 |
+
inputs = processor(
|
350 |
+
model_messages,
|
351 |
+
images=images,
|
352 |
+
videos=None
|
353 |
+
)
|
354 |
+
inputs.to('cuda')
|
355 |
+
inputs.update({
|
356 |
+
'tokenizer': tokenizer,
|
357 |
+
'max_new_tokens': 100,
|
358 |
+
'decode_text': True,
|
359 |
+
})
|
360 |
+
|
361 |
+
response = model.generate(**inputs)
|
362 |
+
return response[0]
|
363 |
+
except Exception as e:
|
364 |
+
print(f"Error processing image: {str(e)}")
|
365 |
+
return "Error processing image"
|
366 |
+
|
367 |
+
def analyze_image_activities(image_path):
|
368 |
+
"""Analyze image using mPLUG model"""
|
369 |
+
try:
|
370 |
+
model, tokenizer, processor = load_model_and_tokenizer()
|
371 |
+
prompt = "Analyze this construction site image and describe the activities happening. Focus on construction activities, machinery usage, and worker actions."
|
372 |
+
response = process_image(image_path, model, tokenizer, processor, prompt)
|
373 |
+
|
374 |
+
del model, tokenizer, processor
|
375 |
+
if DEVICE == "cuda":
|
376 |
+
torch.cuda.empty_cache()
|
377 |
+
gc.collect()
|
378 |
+
|
379 |
+
return response
|
380 |
+
except Exception as e:
|
381 |
+
print(f"Error analyzing image: {str(e)}")
|
382 |
+
return "Error analyzing image activities"
|
383 |
+
|
384 |
+
|
385 |
+
# ------------------------------------------------------------------
|
386 |
+
# NEW: Function to annotate each frame with bounding boxes & counts
|
387 |
+
# ------------------------------------------------------------------
|
388 |
+
def annotate_video_with_bboxes(video_path):
|
389 |
+
"""
|
390 |
+
Reads the entire video frame-by-frame, runs YOLO, draws bounding boxes,
|
391 |
+
writes a per-frame summary of detected classes on the frame, and saves
|
392 |
+
as a new annotated video. Returns: annotated_video_path
|
393 |
+
"""
|
394 |
+
cap = cv2.VideoCapture(video_path)
|
395 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
396 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
397 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
398 |
+
|
399 |
+
# Create a temp file for output
|
400 |
+
out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
401 |
+
annotated_video_path = out_file.name
|
402 |
+
out_file.close()
|
403 |
+
|
404 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
405 |
+
writer = cv2.VideoWriter(annotated_video_path, fourcc, fps, (w, h))
|
406 |
+
|
407 |
+
while True:
|
408 |
+
ret, frame = cap.read()
|
409 |
+
if not ret:
|
410 |
+
break
|
411 |
+
|
412 |
+
results = YOLO_MODEL(frame)
|
413 |
+
|
414 |
+
# Dictionary to hold per-frame counts of each class
|
415 |
+
frame_counts = {}
|
416 |
+
|
417 |
+
for r in results:
|
418 |
+
boxes = r.boxes
|
419 |
+
for box in boxes:
|
420 |
+
cls_id = int(box.cls[0])
|
421 |
+
conf = float(box.conf[0])
|
422 |
+
if conf < 0.5:
|
423 |
+
continue # Skip low-confidence
|
424 |
+
|
425 |
+
x1, y1, x2, y2 = box.xyxy[0]
|
426 |
+
class_name = YOLO_MODEL.names[cls_id]
|
427 |
+
|
428 |
+
# Convert to int
|
429 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
430 |
+
|
431 |
+
# Draw bounding box
|
432 |
+
color = (0, 255, 0)
|
433 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
434 |
+
|
435 |
+
label_text = f"{class_name} {conf:.2f}"
|
436 |
+
cv2.putText(frame, label_text, (x1, y1 - 6),
|
437 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
|
438 |
+
|
439 |
+
# Increment per-frame class count
|
440 |
+
frame_counts[class_name] = frame_counts.get(class_name, 0) + 1
|
441 |
+
|
442 |
+
# Build a summary line, e.g. "Worker: 2, Excavator: 1, ..."
|
443 |
+
summary_str = ", ".join(f"{cls_name}: {count}"
|
444 |
+
for cls_name, count in frame_counts.items())
|
445 |
+
|
446 |
+
# Put the summary text in the top-left
|
447 |
+
cv2.putText(
|
448 |
+
frame,
|
449 |
+
summary_str,
|
450 |
+
(15, 30), # position
|
451 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
452 |
+
1.0,
|
453 |
+
(255, 255, 0),
|
454 |
+
2
|
455 |
+
)
|
456 |
+
|
457 |
+
writer.write(frame)
|
458 |
+
|
459 |
+
cap.release()
|
460 |
+
writer.release()
|
461 |
+
return annotated_video_path
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
# ----------------------------------------------------------------------------
|
466 |
+
# Update process_diary function to also return an annotated video if it's video
|
467 |
+
# ----------------------------------------------------------------------------
|
468 |
+
@spaces.GPU
|
469 |
+
def process_diary(day, date, total_people, total_machinery, machinery_types, activities, media):
|
470 |
+
"""Process the site diary entry"""
|
471 |
+
if media is None:
|
472 |
+
# Return 6 text outputs as before + None for video
|
473 |
+
return [day, date, "No media uploaded", "No media uploaded", "No media uploaded", "No media uploaded", None]
|
474 |
+
|
475 |
+
try:
|
476 |
+
if not hasattr(media, 'name'):
|
477 |
+
raise ValueError("Invalid file upload")
|
478 |
+
|
479 |
+
file_ext = get_file_extension(media.name)
|
480 |
+
if not (is_image(media.name) or is_video(media.name)):
|
481 |
+
raise ValueError(f"Unsupported file type: {file_ext}")
|
482 |
+
|
483 |
+
with tempfile.NamedTemporaryFile(suffix=file_ext, delete=False) as temp_file:
|
484 |
+
temp_path = temp_file.name
|
485 |
+
if hasattr(media, 'name') and os.path.exists(media.name):
|
486 |
+
with open(media.name, 'rb') as f:
|
487 |
+
temp_file.write(f.read())
|
488 |
+
else:
|
489 |
+
file_content = media.read() if hasattr(media, 'read') else media
|
490 |
+
temp_file.write(file_content if isinstance(file_content, bytes) else file_content.read())
|
491 |
+
|
492 |
+
detected_people, detected_machinery, detected_machinery_types = detect_people_and_machinery(temp_path)
|
493 |
+
|
494 |
+
# Default: no annotated video
|
495 |
+
annotated_video_path = None
|
496 |
+
|
497 |
+
if is_image(media.name):
|
498 |
+
# If it's an image, do normal image analysis
|
499 |
+
detected_activities = analyze_image_activities(temp_path)
|
500 |
+
else:
|
501 |
+
# If it's a video, do video analysis & also annotate the video
|
502 |
+
detected_activities = analyze_video_activities(temp_path)
|
503 |
+
annotated_video_path = annotate_video_with_bboxes(temp_path)
|
504 |
+
|
505 |
+
if os.path.exists(temp_path):
|
506 |
+
os.remove(temp_path)
|
507 |
+
|
508 |
+
detected_types_str = ", ".join([f"{k}: {v}" for k, v in detected_machinery_types.items()])
|
509 |
+
# Return 7 outputs (the first 6 as before, plus the annotated video path)
|
510 |
+
return [day, date, str(detected_people), str(detected_machinery), detected_types_str, detected_activities, annotated_video_path]
|
511 |
+
|
512 |
+
except Exception as e:
|
513 |
+
print(f"Error processing media: {str(e)}")
|
514 |
+
return [day, date, "Error processing media", "Error processing media", "Error processing media", "Error processing media", None]
|
515 |
+
|
516 |
+
|
517 |
+
# Create the Gradio interface
|
518 |
+
with gr.Blocks(title="Digital Site Diary") as demo:
|
519 |
+
gr.Markdown("# 📝 Digital Site Diary")
|
520 |
+
|
521 |
+
with gr.Row():
|
522 |
+
# User Input Column
|
523 |
+
with gr.Column():
|
524 |
+
gr.Markdown("### User Input")
|
525 |
+
day = gr.Textbox(label="Day",value='9')
|
526 |
+
date = gr.Textbox(label="Date", placeholder="YYYY-MM-DD", value=datetime.now().strftime("%Y-%m-%d"))
|
527 |
+
total_people = gr.Number(label="Total Number of People", precision=0, value=10)
|
528 |
+
total_machinery = gr.Number(label="Total Number of Machinery", precision=0, value=3)
|
529 |
+
machinery_types = gr.Textbox(
|
530 |
+
label="Number of Machinery Per Type",
|
531 |
+
placeholder="e.g., Excavator: 2, Roller: 1",
|
532 |
+
value="Excavator: 2, Roller: 1"
|
533 |
+
)
|
534 |
+
activities = gr.Textbox(
|
535 |
+
label="Activity",
|
536 |
+
placeholder="e.g., 9 AM: Excavation, 10 AM: Concreting",
|
537 |
+
value="9 AM: Excavation, 10 AM: Concreting",
|
538 |
+
lines=3
|
539 |
+
)
|
540 |
+
media = gr.File(label="Upload Image/Video", file_types=["image", "video"])
|
541 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
542 |
+
|
543 |
+
# Model Detection Column
|
544 |
+
with gr.Column():
|
545 |
+
gr.Markdown("### Model Detection")
|
546 |
+
model_day = gr.Textbox(label="Day")
|
547 |
+
model_date = gr.Textbox(label="Date")
|
548 |
+
model_people = gr.Textbox(label="Total Number of People")
|
549 |
+
model_machinery = gr.Textbox(label="Total Number of Machinery")
|
550 |
+
model_machinery_types = gr.Textbox(label="Number of Machinery Per Type")
|
551 |
+
model_activities = gr.Textbox(label="Activity", lines=5)
|
552 |
+
# NEW: annotated video output
|
553 |
+
model_annotated_video = gr.Video(label="Annotated Video")
|
554 |
+
|
555 |
+
# Connect the submit button to the processing function
|
556 |
+
submit_btn.click(
|
557 |
+
fn=process_diary,
|
558 |
+
inputs=[day, date, total_people, total_machinery, machinery_types, activities, media],
|
559 |
+
outputs=[
|
560 |
+
model_day,
|
561 |
+
model_date,
|
562 |
+
model_people,
|
563 |
+
model_machinery,
|
564 |
+
model_machinery_types,
|
565 |
+
model_activities,
|
566 |
+
model_annotated_video # The new 7th output
|
567 |
+
]
|
568 |
+
)
|
569 |
+
|
570 |
+
if __name__ == "__main__":
|
571 |
+
# launch
|
572 |
+
demo.launch(share=False, debug=True, show_api=False, server_port=args.port, server_name=args.host)
|
573 |
+
|
best_yolov11.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cff449e4fd3c5e66fe5a7443b680c5bda1f3613ee83bd2dea49faec5db5be324
|
3 |
+
size 40517477
|
requirements.txt
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch --index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torchvision --index-url https://download.pytorch.org/whl/cu118
|
3 |
+
torchaudio --index-url https://download.pytorch.org/whl/cu118
|
4 |
+
icecream
|
5 |
+
markdown2
|
6 |
+
modelscope
|
7 |
+
pydantic
|
8 |
+
accelerate
|
9 |
+
transformers==4.37.2
|
10 |
+
tokenizers
|
11 |
+
sentencepiece
|
12 |
+
shortuuid
|
13 |
+
bitsandbytes
|
14 |
+
timm
|
15 |
+
requests
|
16 |
+
httpx==0.24.0
|
17 |
+
uvicorn
|
18 |
+
einops-exts
|
19 |
+
einops
|
20 |
+
scikit-learn
|
21 |
+
numpy
|
22 |
+
decord
|
23 |
+
opencv-python
|
24 |
+
#gradio==4.41.0
|
25 |
+
http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/modelscope_studio-0.4.0.9-py3-none-any.whl
|
26 |
+
flash-attn
|