Spaces:
Sleeping
Sleeping
Update image_captioning.py
Browse files- image_captioning.py +225 -80
image_captioning.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from modelscope.hub.snapshot_download import snapshot_download
|
4 |
from PIL import Image
|
|
|
5 |
from decord import VideoReader, cpu
|
6 |
import os
|
7 |
import gc
|
@@ -9,10 +10,11 @@ import cv2
|
|
9 |
import tempfile
|
10 |
import shutil
|
11 |
import subprocess
|
|
|
12 |
from yolo_detection import is_image, is_video
|
13 |
|
14 |
# Constants for video processing
|
15 |
-
MAX_NUM_FRAMES = 32
|
16 |
|
17 |
# Check if CUDA is available
|
18 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -27,7 +29,7 @@ if DEVICE == "cuda":
|
|
27 |
|
28 |
# Model configuration
|
29 |
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
|
30 |
-
MODEL_CACHE_DIR = "
|
31 |
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
32 |
|
33 |
# Download and cache the model
|
@@ -39,8 +41,10 @@ except Exception as e:
|
|
39 |
|
40 |
|
41 |
# Model configuration and existing functions remain unchanged...
|
|
|
42 |
def load_model_and_tokenizer():
|
43 |
-
"""Load a
|
|
|
44 |
try:
|
45 |
# Clear GPU memory if using CUDA
|
46 |
if DEVICE == "cuda":
|
@@ -66,6 +70,7 @@ def load_model_and_tokenizer():
|
|
66 |
print(f"Error loading model: {str(e)}")
|
67 |
raise
|
68 |
|
|
|
69 |
def process_image(image_path, model, tokenizer, processor, prompt):
|
70 |
"""Process single image with mPLUG model"""
|
71 |
try:
|
@@ -153,27 +158,168 @@ def process_video_chunk(video_frames, model, tokenizer, processor, prompt):
|
|
153 |
})
|
154 |
|
155 |
response = model.generate(**inputs)
|
|
|
156 |
return response[0]
|
157 |
|
158 |
def split_original_video(video_path, chunk_info):
|
159 |
-
"""Split original video into chunks using
|
160 |
original_chunks = []
|
|
|
161 |
tmp_dir = os.path.join('.', 'tmp')
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
for chunk in chunk_info:
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
return original_chunks
|
178 |
|
179 |
def encode_video_in_chunks(video_path):
|
@@ -303,71 +449,70 @@ def generate_thumbnails(video_path, num_chunks):
|
|
303 |
|
304 |
return thumbnails
|
305 |
|
306 |
-
def analyze_video_activities(video_path):
|
307 |
"""Analyze video using mPLUG model with chunking"""
|
308 |
global TOTAL_CHUNKS
|
309 |
-
try:
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
-
#
|
320 |
-
|
|
|
|
|
321 |
|
322 |
-
#
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
print(f"Chunk {chunk_idx}: {response}")
|
330 |
|
331 |
-
#
|
332 |
-
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
'timestamp_seconds': thumbnail['time'], # Store raw seconds for sorting
|
359 |
-
'summary': response,
|
360 |
-
'objects': objects,
|
361 |
-
'thumbnail': thumbnail["path"],
|
362 |
-
'chunk_id': chunk_idx,
|
363 |
-
'chunk_path': chunk_info['path'] if chunk_info else None
|
364 |
-
}
|
365 |
-
|
366 |
-
all_activities.append(activity)
|
367 |
-
|
368 |
-
# Sort activities by timestamp
|
369 |
-
all_activities.sort(key=lambda x: x['timestamp_seconds'])
|
370 |
-
return all_activities
|
371 |
-
except Exception as e:
|
372 |
-
print(f"Error analyzing video: {str(e)}")
|
373 |
-
return [] # Maintain consistent return type
|
|
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from modelscope.hub.snapshot_download import snapshot_download
|
4 |
from PIL import Image
|
5 |
+
from functools import lru_cache
|
6 |
from decord import VideoReader, cpu
|
7 |
import os
|
8 |
import gc
|
|
|
10 |
import tempfile
|
11 |
import shutil
|
12 |
import subprocess
|
13 |
+
import ffmpeg # Added for ffmpeg-python
|
14 |
from yolo_detection import is_image, is_video
|
15 |
|
16 |
# Constants for video processing
|
17 |
+
MAX_NUM_FRAMES = 32 # Reduced from 64 to potentially avoid OOM
|
18 |
|
19 |
# Check if CUDA is available
|
20 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
29 |
|
30 |
# Model configuration
|
31 |
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
|
32 |
+
MODEL_CACHE_DIR = "data/models"
|
33 |
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
34 |
|
35 |
# Download and cache the model
|
|
|
41 |
|
42 |
|
43 |
# Model configuration and existing functions remain unchanged...
|
44 |
+
@lru_cache(maxsize=1)
|
45 |
def load_model_and_tokenizer():
|
46 |
+
"""Load a cached instance of the model and tokenizer"""
|
47 |
+
print("Loading/Retrieving mPLUG model from cache...")
|
48 |
try:
|
49 |
# Clear GPU memory if using CUDA
|
50 |
if DEVICE == "cuda":
|
|
|
70 |
print(f"Error loading model: {str(e)}")
|
71 |
raise
|
72 |
|
73 |
+
|
74 |
def process_image(image_path, model, tokenizer, processor, prompt):
|
75 |
"""Process single image with mPLUG model"""
|
76 |
try:
|
|
|
158 |
})
|
159 |
|
160 |
response = model.generate(**inputs)
|
161 |
+
del inputs
|
162 |
return response[0]
|
163 |
|
164 |
def split_original_video(video_path, chunk_info):
|
165 |
+
"""Split original video into chunks using multiple methods with fallbacks for cross-platform reliability"""
|
166 |
original_chunks = []
|
167 |
+
# Clean the ./tmp directory containing chunks/thumbnails
|
168 |
tmp_dir = os.path.join('.', 'tmp')
|
169 |
+
if os.path.exists(tmp_dir):
|
170 |
+
try:
|
171 |
+
shutil.rmtree(tmp_dir)
|
172 |
+
os.makedirs(tmp_dir, exist_ok=True) # Recreate for next run
|
173 |
+
print(f"Cleaned up temporary directory: {tmp_dir}")
|
174 |
+
except OSError as e:
|
175 |
+
print(f"Error removing temporary directory {tmp_dir}: {e}")
|
176 |
+
else:
|
177 |
+
os.makedirs(tmp_dir)
|
178 |
+
|
179 |
for chunk in chunk_info:
|
180 |
+
chunk_id = chunk['chunk_id']
|
181 |
+
start_time = chunk['start_time']
|
182 |
+
end_time = chunk['end_time']
|
183 |
+
output_path = os.path.join(tmp_dir, f"original_chunk_{chunk_id}.mp4")
|
184 |
+
|
185 |
+
# Try three different methods in order of preference
|
186 |
+
chunk_created = False
|
187 |
+
|
188 |
+
# Method 1: Try ffmpeg-python library
|
189 |
+
if not chunk_created:
|
190 |
+
try:
|
191 |
+
(
|
192 |
+
ffmpeg
|
193 |
+
.input(video_path, ss=start_time, to=end_time)
|
194 |
+
.output(output_path, c='copy', loglevel="quiet") # Added loglevel quiet
|
195 |
+
.run(capture_stdout=True, capture_stderr=True)
|
196 |
+
)
|
197 |
+
# Check if file exists and is not empty after ffmpeg-python call
|
198 |
+
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
|
199 |
+
chunk_created = True
|
200 |
+
print(f"Successfully created chunk {chunk_id} using ffmpeg-python")
|
201 |
+
else:
|
202 |
+
print(f"ffmpeg-python ran but did not create a valid file for chunk {chunk_id}")
|
203 |
+
# Optionally raise an exception here if needed, or just let it proceed to next method
|
204 |
+
except ffmpeg.Error as e: # Catch specific ffmpeg errors
|
205 |
+
print(f"ffmpeg-python error for chunk {chunk_id}: {e.stderr.decode() if e.stderr else str(e)}, trying OpenCV method")
|
206 |
+
except Exception as e: # Catch other potential errors like file not found
|
207 |
+
print(f"ffmpeg-python failed with general error for chunk {chunk_id}: {str(e)}, trying OpenCV method")
|
208 |
+
|
209 |
+
# Method 2: Try OpenCV for video splitting (re-encoding)
|
210 |
+
if not chunk_created:
|
211 |
+
try:
|
212 |
+
cap = cv2.VideoCapture(video_path)
|
213 |
+
if not cap.isOpened():
|
214 |
+
raise IOError(f"Cannot open video file: {video_path}")
|
215 |
+
|
216 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
217 |
+
if fps <= 0: # Handle case where fps is invalid
|
218 |
+
print(f"Warning: Invalid FPS ({fps}) detected for {video_path}. Using default 30.")
|
219 |
+
fps = 30.0
|
220 |
+
|
221 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
222 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
223 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
224 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
225 |
+
|
226 |
+
# Calculate frame positions
|
227 |
+
start_frame = int(start_time * fps)
|
228 |
+
end_frame = int(end_time * fps)
|
229 |
+
|
230 |
+
# Set position to start frame
|
231 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
|
232 |
+
current_frame = start_frame
|
233 |
+
|
234 |
+
while current_frame < end_frame:
|
235 |
+
ret, frame = cap.read()
|
236 |
+
if not ret:
|
237 |
+
print(f"Warning: Could not read frame {current_frame} for chunk {chunk_id}. Reached end of video early?")
|
238 |
+
break # Stop if we can't read a frame
|
239 |
+
out.write(frame)
|
240 |
+
current_frame += 1
|
241 |
+
|
242 |
+
cap.release()
|
243 |
+
out.release()
|
244 |
+
|
245 |
+
# Check if file exists and is not empty after OpenCV call
|
246 |
+
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
|
247 |
+
chunk_created = True
|
248 |
+
print(f"Successfully created chunk {chunk_id} using OpenCV")
|
249 |
+
else:
|
250 |
+
print(f"OpenCV method ran but did not create a valid file for chunk {chunk_id}")
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
print(f"OpenCV method failed for chunk {chunk_id}: {str(e)}, trying subprocess method")
|
254 |
+
# Clean up potentially empty file created by OpenCV on error
|
255 |
+
if os.path.exists(output_path):
|
256 |
+
try:
|
257 |
+
os.remove(output_path)
|
258 |
+
except OSError:
|
259 |
+
pass # Ignore cleanup error
|
260 |
+
|
261 |
+
# Method 3: Last resort - Try subprocess with better error handling
|
262 |
+
if not chunk_created:
|
263 |
+
try:
|
264 |
+
cmd = [
|
265 |
+
'ffmpeg',
|
266 |
+
'-ss', str(start_time),
|
267 |
+
'-to', str(end_time),
|
268 |
+
'-i', video_path,
|
269 |
+
'-c', 'copy', # Attempt copy first
|
270 |
+
'-loglevel', 'error', # Reduce log noise
|
271 |
+
output_path
|
272 |
+
]
|
273 |
+
|
274 |
+
process = subprocess.run(cmd, capture_output=True, text=True, check=False) # Don't check=True initially
|
275 |
+
|
276 |
+
if process.returncode != 0 or not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
|
277 |
+
print(f"Subprocess ffmpeg copy failed for chunk {chunk_id}. Stderr: {process.stderr}. Trying re-encoding.")
|
278 |
+
# If copy fails, try re-encoding as a fallback within subprocess
|
279 |
+
cmd_reencode = [
|
280 |
+
'ffmpeg',
|
281 |
+
'-ss', str(start_time),
|
282 |
+
'-to', str(end_time),
|
283 |
+
'-i', video_path,
|
284 |
+
# '-c:v', 'libx264', # Example re-encode, adjust as needed
|
285 |
+
# '-crf', '23',
|
286 |
+
# '-c:a', 'aac',
|
287 |
+
'-loglevel', 'error',
|
288 |
+
output_path
|
289 |
+
]
|
290 |
+
# Ensure overwrite if previous attempt created an empty file
|
291 |
+
if os.path.exists(output_path):
|
292 |
+
cmd_reencode.insert(1, '-y') # Add overwrite flag
|
293 |
+
|
294 |
+
process_reencode = subprocess.run(cmd_reencode, capture_output=True, text=True, check=False)
|
295 |
+
|
296 |
+
if process_reencode.returncode != 0:
|
297 |
+
raise Exception(f"Subprocess ffmpeg re-encode also failed. Stderr: {process_reencode.stderr}")
|
298 |
+
|
299 |
+
# Final check after subprocess attempts
|
300 |
+
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
|
301 |
+
chunk_created = True
|
302 |
+
print(f"Successfully created chunk {chunk_id} using subprocess ffmpeg")
|
303 |
+
else:
|
304 |
+
raise Exception("Subprocess ffmpeg failed to create a valid file.")
|
305 |
+
|
306 |
+
except FileNotFoundError:
|
307 |
+
print(f"Subprocess failed for chunk {chunk_id}: 'ffmpeg' command not found. Ensure ffmpeg is installed and in PATH.")
|
308 |
+
except Exception as e:
|
309 |
+
print(f"Subprocess method failed for chunk {chunk_id}: {str(e)}")
|
310 |
+
# Clean up potentially empty file
|
311 |
+
if os.path.exists(output_path):
|
312 |
+
try:
|
313 |
+
os.remove(output_path)
|
314 |
+
except OSError:
|
315 |
+
pass
|
316 |
+
|
317 |
+
# If any method succeeded, add the chunk to our list
|
318 |
+
if chunk_created and os.path.exists(output_path):
|
319 |
+
original_chunks.append(output_path)
|
320 |
+
else:
|
321 |
+
print(f"Warning: Failed to create chunk {chunk_id} using all methods, skipping.")
|
322 |
+
|
323 |
return original_chunks
|
324 |
|
325 |
def encode_video_in_chunks(video_path):
|
|
|
449 |
|
450 |
return thumbnails
|
451 |
|
452 |
+
def analyze_video_activities(video_path, model, tokenizer, processor):
|
453 |
"""Analyze video using mPLUG model with chunking"""
|
454 |
global TOTAL_CHUNKS
|
455 |
+
# try:
|
456 |
+
# Existing chunk processing
|
457 |
+
all_activities = []
|
458 |
+
# Calculate total chunks first
|
459 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
460 |
+
sample_fps = round(vr.get_avg_fps() / 1)
|
461 |
+
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
462 |
+
TOTAL_CHUNKS = len([frame_idx[i:i + MAX_NUM_FRAMES]
|
463 |
+
for i in range(0, len(frame_idx), MAX_NUM_FRAMES)])
|
464 |
+
|
465 |
+
# Generate thumbnails with known chunk count
|
466 |
+
thumbnails = generate_thumbnails(video_path, num_chunks=TOTAL_CHUNKS)
|
467 |
+
|
468 |
+
# Now process chunks
|
469 |
+
chunk_generator = encode_video_in_chunks(video_path)
|
470 |
+
|
471 |
+
for chunk_idx, video_frames, chunk_info in chunk_generator:
|
472 |
+
prompt = "Analyze this construction site video chunk and describe the activities happening. Focus on construction activities, machinery usage, and worker actions. Include any construction equipment or machinery you can identify."
|
473 |
+
response = process_video_chunk(video_frames, model, tokenizer, processor, prompt)
|
474 |
+
print(f"Chunk {chunk_idx}: {response}")
|
475 |
|
476 |
+
# Map responses to thumbnails
|
477 |
+
time_start = chunk_idx * MAX_NUM_FRAMES
|
478 |
+
chunk_thumbnails = [t for t in thumbnails
|
479 |
+
if time_start <= t['time'] < time_start + MAX_NUM_FRAMES]
|
480 |
|
481 |
+
# Extract time from frame position
|
482 |
+
for thumbnail in chunk_thumbnails:
|
483 |
+
# Calculate timestamp in minutes:seconds format
|
484 |
+
seconds = int(thumbnail['time'])
|
485 |
+
minutes = seconds // 60
|
486 |
+
seconds = seconds % 60
|
487 |
+
timestamp = f"{minutes:02d}:{seconds:02d}"
|
|
|
488 |
|
489 |
+
# Extract objects using basic text parsing from the response
|
490 |
+
# In a production system, you might want to use more sophisticated NLP
|
491 |
+
objects = []
|
492 |
+
lower_response = response.lower()
|
493 |
+
possible_objects = ["excavator", "bulldozer", "crane", "truck", "loader",
|
494 |
+
"worker", "concrete", "scaffold", "beam", "pipe",
|
495 |
+
"rebar", "formwork", "drill", "grader", "roller"]
|
496 |
|
497 |
+
for obj in possible_objects:
|
498 |
+
if obj in lower_response:
|
499 |
+
objects.append(obj)
|
500 |
+
|
501 |
+
activity = {
|
502 |
+
'time': timestamp,
|
503 |
+
'timestamp_seconds': thumbnail['time'], # Store raw seconds for sorting
|
504 |
+
'summary': response,
|
505 |
+
'objects': objects,
|
506 |
+
'thumbnail': thumbnail["path"],
|
507 |
+
'chunk_id': chunk_idx,
|
508 |
+
'chunk_path': chunk_info['path'] if chunk_info else None
|
509 |
+
}
|
510 |
+
|
511 |
+
all_activities.append(activity)
|
512 |
+
|
513 |
+
# Sort activities by timestamp
|
514 |
+
all_activities.sort(key=lambda x: x['timestamp_seconds'])
|
515 |
+
return all_activities
|
516 |
+
# except Exception as e:
|
517 |
+
# print(f"Error analyzing video: {str(e)}")
|
518 |
+
# return [] # Maintain consistent return type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|