Spaces:
Sleeping
Sleeping
Create image_captioning.py
Browse files- image_captioning.py +380 -0
image_captioning.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
from modelscope.hub.snapshot_download import snapshot_download
|
4 |
+
from PIL import Image
|
5 |
+
from decord import VideoReader, cpu
|
6 |
+
import os
|
7 |
+
import gc
|
8 |
+
import cv2
|
9 |
+
import tempfile
|
10 |
+
import shutil
|
11 |
+
import subprocess
|
12 |
+
from yolo_detection import is_image, is_video
|
13 |
+
|
14 |
+
# Constants for video processing
|
15 |
+
MAX_NUM_FRAMES = 32
|
16 |
+
|
17 |
+
# Check if CUDA is available
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
global TOTAL_CHUNKS
|
20 |
+
TOTAL_CHUNKS = 1
|
21 |
+
|
22 |
+
# Initialize GPU if available
|
23 |
+
if DEVICE == "cuda":
|
24 |
+
def debug():
|
25 |
+
torch.randn(10).cuda()
|
26 |
+
debug()
|
27 |
+
|
28 |
+
# Model configuration
|
29 |
+
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
|
30 |
+
MODEL_CACHE_DIR = os.getenv('TRANSFORMERS_CACHE', './models')
|
31 |
+
|
32 |
+
# Create cache directory if it doesn't exist
|
33 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
34 |
+
|
35 |
+
# Download and cache the model
|
36 |
+
try:
|
37 |
+
model_path = snapshot_download(MODEL_NAME, cache_dir=MODEL_CACHE_DIR)
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error downloading model: {str(e)}")
|
40 |
+
model_path = os.path.join(MODEL_CACHE_DIR, MODEL_NAME)
|
41 |
+
|
42 |
+
|
43 |
+
# Model configuration and existing functions remain unchanged...
|
44 |
+
def load_model_and_tokenizer():
|
45 |
+
"""Load a fresh instance of the model and tokenizer"""
|
46 |
+
try:
|
47 |
+
# Clear GPU memory if using CUDA
|
48 |
+
if DEVICE == "cuda":
|
49 |
+
torch.cuda.empty_cache()
|
50 |
+
gc.collect()
|
51 |
+
|
52 |
+
model = AutoModel.from_pretrained(
|
53 |
+
model_path,
|
54 |
+
attn_implementation='sdpa',
|
55 |
+
trust_remote_code=True,
|
56 |
+
torch_dtype=torch.half,
|
57 |
+
device_map='auto'
|
58 |
+
)
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
61 |
+
model_path,
|
62 |
+
trust_remote_code=True
|
63 |
+
)
|
64 |
+
model.eval()
|
65 |
+
processor = model.init_processor(tokenizer)
|
66 |
+
return model, tokenizer, processor
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error loading model: {str(e)}")
|
69 |
+
raise
|
70 |
+
|
71 |
+
def process_image(image_path, model, tokenizer, processor, prompt):
|
72 |
+
"""Process single image with mPLUG model"""
|
73 |
+
try:
|
74 |
+
image = Image.open(image_path)
|
75 |
+
messages = [{
|
76 |
+
"role": "user",
|
77 |
+
"content": prompt,
|
78 |
+
"images": [image]
|
79 |
+
}]
|
80 |
+
|
81 |
+
model_messages = []
|
82 |
+
images = []
|
83 |
+
|
84 |
+
for msg in messages:
|
85 |
+
content_str = msg["content"]
|
86 |
+
if "images" in msg and msg["images"]:
|
87 |
+
content_str += "<|image|>"
|
88 |
+
images.extend(msg["images"])
|
89 |
+
model_messages.append({
|
90 |
+
"role": msg["role"],
|
91 |
+
"content": content_str
|
92 |
+
})
|
93 |
+
|
94 |
+
model_messages.append({
|
95 |
+
"role": "assistant",
|
96 |
+
"content": ""
|
97 |
+
})
|
98 |
+
|
99 |
+
inputs = processor(
|
100 |
+
model_messages,
|
101 |
+
images=images,
|
102 |
+
videos=None
|
103 |
+
)
|
104 |
+
inputs.to('cuda')
|
105 |
+
inputs.update({
|
106 |
+
'tokenizer': tokenizer,
|
107 |
+
'max_new_tokens': 100,
|
108 |
+
'decode_text': True,
|
109 |
+
})
|
110 |
+
|
111 |
+
response = model.generate(**inputs)
|
112 |
+
return response[0]
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Error processing image: {str(e)}")
|
115 |
+
return "Error processing image"
|
116 |
+
|
117 |
+
def process_video_chunk(video_frames, model, tokenizer, processor, prompt):
|
118 |
+
"""Process a chunk of video frames with mPLUG model"""
|
119 |
+
messages = [
|
120 |
+
{
|
121 |
+
"role": "user",
|
122 |
+
"content": prompt,
|
123 |
+
"video_frames": video_frames
|
124 |
+
}
|
125 |
+
]
|
126 |
+
|
127 |
+
model_messages = []
|
128 |
+
videos = []
|
129 |
+
|
130 |
+
for msg in messages:
|
131 |
+
content_str = msg["content"]
|
132 |
+
if "video_frames" in msg and msg["video_frames"]:
|
133 |
+
content_str += "<|video|>"
|
134 |
+
videos.append(msg["video_frames"])
|
135 |
+
model_messages.append({
|
136 |
+
"role": msg["role"],
|
137 |
+
"content": content_str
|
138 |
+
})
|
139 |
+
|
140 |
+
model_messages.append({
|
141 |
+
"role": "assistant",
|
142 |
+
"content": ""
|
143 |
+
})
|
144 |
+
|
145 |
+
inputs = processor(
|
146 |
+
model_messages,
|
147 |
+
images=None,
|
148 |
+
videos=videos if videos else None
|
149 |
+
)
|
150 |
+
inputs.to('cuda')
|
151 |
+
inputs.update({
|
152 |
+
'tokenizer': tokenizer,
|
153 |
+
'max_new_tokens': 100,
|
154 |
+
'decode_text': True,
|
155 |
+
})
|
156 |
+
|
157 |
+
response = model.generate(**inputs)
|
158 |
+
return response[0]
|
159 |
+
|
160 |
+
def split_original_video(video_path, chunk_info):
|
161 |
+
"""Split original video into chunks using precise timestamps"""
|
162 |
+
original_chunks = []
|
163 |
+
tmp_dir = os.path.join('/teamspace/studios/this_studio', 'tmp')
|
164 |
+
|
165 |
+
for chunk in chunk_info:
|
166 |
+
output_path = os.path.join(tmp_dir, f"original_chunk_{chunk['chunk_id']}.mp4")
|
167 |
+
# Use ffmpeg for precise splitting without re-encoding
|
168 |
+
cmd = [
|
169 |
+
'ffmpeg',
|
170 |
+
'-ss', str(chunk['start_time']),
|
171 |
+
'-to', str(chunk['end_time']),
|
172 |
+
'-i', video_path,
|
173 |
+
'-c', 'copy',
|
174 |
+
output_path
|
175 |
+
]
|
176 |
+
subprocess.run(cmd, check=True)
|
177 |
+
original_chunks.append(output_path)
|
178 |
+
|
179 |
+
return original_chunks
|
180 |
+
|
181 |
+
def encode_video_in_chunks(video_path):
|
182 |
+
"""Extract frames from a video in chunks and save chunks to disk"""
|
183 |
+
global TOTAL_CHUNKS
|
184 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
185 |
+
original_fps = vr.get_avg_fps()
|
186 |
+
sample_fps = round(original_fps / 1) # 1 FPS
|
187 |
+
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
188 |
+
fps = vr.get_avg_fps()
|
189 |
+
|
190 |
+
# Create tmp directory if it doesn't exist
|
191 |
+
tmp_dir = os.path.join('/teamspace/studios/this_studio', 'tmp')
|
192 |
+
os.makedirs(tmp_dir, exist_ok=True)
|
193 |
+
|
194 |
+
# Split frame indices into chunks
|
195 |
+
chunks = [
|
196 |
+
frame_idx[i:i + MAX_NUM_FRAMES]
|
197 |
+
for i in range(0, len(frame_idx), MAX_NUM_FRAMES)
|
198 |
+
]
|
199 |
+
|
200 |
+
# Set global TOTAL_CHUNKS before processing
|
201 |
+
TOTAL_CHUNKS = len(chunks)
|
202 |
+
print(f"Total chunks: {TOTAL_CHUNKS}")
|
203 |
+
|
204 |
+
# Information about saved chunks
|
205 |
+
chunk_info = []
|
206 |
+
|
207 |
+
for chunk_idx, chunk in enumerate(chunks):
|
208 |
+
# Get frames for this chunk
|
209 |
+
frames = vr.get_batch(chunk).asnumpy()
|
210 |
+
frames_pil = [Image.fromarray(v.astype('uint8')) for v in frames]
|
211 |
+
|
212 |
+
# Save chunk as a video file
|
213 |
+
chunk_path = os.path.join(tmp_dir, f"chunk_{chunk_idx}.mp4")
|
214 |
+
|
215 |
+
# Calculate start and end times for this chunk
|
216 |
+
if chunk:
|
217 |
+
start_frame = chunk[0]
|
218 |
+
end_frame = chunk[-1]
|
219 |
+
start_time = start_frame / fps
|
220 |
+
end_time = end_frame / fps
|
221 |
+
|
222 |
+
# Save chunk info for later use
|
223 |
+
chunk_info.append({
|
224 |
+
'chunk_id': chunk_idx,
|
225 |
+
'path': chunk_path,
|
226 |
+
'start_time': start_time,
|
227 |
+
'end_time': end_time,
|
228 |
+
'start_frame': start_frame,
|
229 |
+
'end_frame': end_frame,
|
230 |
+
'original_fps': fps # Use actual fps from video
|
231 |
+
})
|
232 |
+
|
233 |
+
# Use OpenCV to create video from frames
|
234 |
+
height, width, _ = frames[0].shape
|
235 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
236 |
+
out = cv2.VideoWriter(chunk_path, fourcc, fps, (width, height))
|
237 |
+
|
238 |
+
for frame in frames:
|
239 |
+
# Convert RGB to BGR (OpenCV format)
|
240 |
+
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
241 |
+
out.write(frame_bgr)
|
242 |
+
|
243 |
+
out.release()
|
244 |
+
print(f"Saved chunk {chunk_idx} to {chunk_path}")
|
245 |
+
|
246 |
+
yield chunk_idx, frames_pil, chunk_info[-1] if chunk_info else None
|
247 |
+
|
248 |
+
# Split original video after processing all chunks
|
249 |
+
original_chunks = split_original_video(video_path, chunk_info)
|
250 |
+
|
251 |
+
def analyze_image_activities(image_path):
|
252 |
+
"""Analyze construction site image and generate activity description"""
|
253 |
+
from datetime import datetime, timedelta
|
254 |
+
try:
|
255 |
+
# Sample structured response - Replace with actual model processing
|
256 |
+
return [
|
257 |
+
{
|
258 |
+
'time': datetime.now().strftime("%I:%M %p"),
|
259 |
+
'summary': 'Excavation work in progress',
|
260 |
+
'objects': ['excavator', 'worker', 'dump-truck']
|
261 |
+
},
|
262 |
+
{
|
263 |
+
'time': (datetime.now() - timedelta(minutes=30)).strftime("%I:%M %p"),
|
264 |
+
'summary': 'Material loading operation',
|
265 |
+
'objects': ['loader', 'worker', 'gravel']
|
266 |
+
}
|
267 |
+
]
|
268 |
+
except Exception as e:
|
269 |
+
print(f"Error analyzing image: {str(e)}")
|
270 |
+
return [] # Return empty list on error
|
271 |
+
|
272 |
+
|
273 |
+
def generate_thumbnails(video_path, num_chunks):
|
274 |
+
"""Extract thumbnails for each chunk
|
275 |
+
Args:
|
276 |
+
video_path: Path to video file
|
277 |
+
num_chunks: Number of chunks to generate thumbnails for
|
278 |
+
"""
|
279 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
280 |
+
thumbnails = []
|
281 |
+
total_frames = len(vr)
|
282 |
+
|
283 |
+
# Create/clear tmp directory in current working directory
|
284 |
+
tmp_dir = os.path.join('/teamspace/studios/this_studio', 'tmp')
|
285 |
+
# Remove existing directory if it exists
|
286 |
+
if os.path.exists(tmp_dir):
|
287 |
+
shutil.rmtree(tmp_dir)
|
288 |
+
os.makedirs(tmp_dir, exist_ok=True)
|
289 |
+
|
290 |
+
# Calculate frame step size based on number of chunks
|
291 |
+
frame_step = total_frames // num_chunks
|
292 |
+
|
293 |
+
for chunk_idx in range(num_chunks):
|
294 |
+
# Take frame at start of each chunk
|
295 |
+
frame_idx = chunk_idx * frame_step
|
296 |
+
if frame_idx < total_frames:
|
297 |
+
frame = vr[frame_idx].asnumpy()
|
298 |
+
img = Image.fromarray(frame)
|
299 |
+
temp_path = os.path.join(tmp_dir, f"thumbnail_{chunk_idx}.jpg")
|
300 |
+
img.save(temp_path)
|
301 |
+
thumbnails.append({
|
302 |
+
"path": temp_path,
|
303 |
+
"time": frame_idx/vr.get_avg_fps()
|
304 |
+
})
|
305 |
+
|
306 |
+
return thumbnails
|
307 |
+
|
308 |
+
def analyze_video_activities(video_path):
|
309 |
+
"""Analyze video using mPLUG model with chunking"""
|
310 |
+
global TOTAL_CHUNKS
|
311 |
+
try:
|
312 |
+
# Existing chunk processing
|
313 |
+
all_activities = []
|
314 |
+
# Calculate total chunks first
|
315 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
316 |
+
sample_fps = round(vr.get_avg_fps() / 1)
|
317 |
+
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
318 |
+
TOTAL_CHUNKS = len([frame_idx[i:i + MAX_NUM_FRAMES]
|
319 |
+
for i in range(0, len(frame_idx), MAX_NUM_FRAMES)])
|
320 |
+
|
321 |
+
# Generate thumbnails with known chunk count
|
322 |
+
thumbnails = generate_thumbnails(video_path, num_chunks=TOTAL_CHUNKS)
|
323 |
+
|
324 |
+
# Now process chunks
|
325 |
+
chunk_generator = encode_video_in_chunks(video_path)
|
326 |
+
|
327 |
+
for chunk_idx, video_frames, chunk_info in chunk_generator:
|
328 |
+
model, tokenizer, processor = load_model_and_tokenizer()
|
329 |
+
prompt = "Analyze this construction site video chunk and describe the activities happening. Focus on construction activities, machinery usage, and worker actions. Include any construction equipment or machinery you can identify."
|
330 |
+
response = process_video_chunk(video_frames, model, tokenizer, processor, prompt)
|
331 |
+
print(f"Chunk {chunk_idx}: {response}")
|
332 |
+
|
333 |
+
# Map responses to thumbnails
|
334 |
+
time_start = chunk_idx * MAX_NUM_FRAMES
|
335 |
+
chunk_thumbnails = [t for t in thumbnails
|
336 |
+
if time_start <= t['time'] < time_start + MAX_NUM_FRAMES]
|
337 |
+
|
338 |
+
# Extract time from frame position
|
339 |
+
for thumbnail in chunk_thumbnails:
|
340 |
+
# Calculate timestamp in minutes:seconds format
|
341 |
+
seconds = int(thumbnail['time'])
|
342 |
+
minutes = seconds // 60
|
343 |
+
seconds = seconds % 60
|
344 |
+
timestamp = f"{minutes:02d}:{seconds:02d}"
|
345 |
+
|
346 |
+
# Extract objects using basic text parsing from the response
|
347 |
+
# In a production system, you might want to use more sophisticated NLP
|
348 |
+
objects = []
|
349 |
+
lower_response = response.lower()
|
350 |
+
possible_objects = ["excavator", "bulldozer", "crane", "truck", "loader",
|
351 |
+
"worker", "concrete", "scaffold", "beam", "pipe",
|
352 |
+
"rebar", "formwork", "drill", "grader", "roller"]
|
353 |
+
|
354 |
+
for obj in possible_objects:
|
355 |
+
if obj in lower_response:
|
356 |
+
objects.append(obj)
|
357 |
+
|
358 |
+
activity = {
|
359 |
+
'time': timestamp,
|
360 |
+
'timestamp_seconds': thumbnail['time'], # Store raw seconds for sorting
|
361 |
+
'summary': response,
|
362 |
+
'objects': objects,
|
363 |
+
'thumbnail': thumbnail["path"],
|
364 |
+
'chunk_id': chunk_idx,
|
365 |
+
'chunk_path': chunk_info['path'] if chunk_info else None
|
366 |
+
}
|
367 |
+
|
368 |
+
all_activities.append(activity)
|
369 |
+
|
370 |
+
# Cleanup
|
371 |
+
del model, tokenizer, processor
|
372 |
+
torch.cuda.empty_cache()
|
373 |
+
gc.collect()
|
374 |
+
|
375 |
+
# Sort activities by timestamp
|
376 |
+
all_activities.sort(key=lambda x: x['timestamp_seconds'])
|
377 |
+
return all_activities
|
378 |
+
except Exception as e:
|
379 |
+
print(f"Error analyzing video: {str(e)}")
|
380 |
+
return [] # Maintain consistent return type
|