Spaces:
Sleeping
Sleeping
Commit
·
d1424b3
0
Parent(s):
somewhat working commit of people counter
Browse files- .gitignore +14 -0
- .python-version +1 -0
- README.md +48 -0
- main.py +141 -0
- pyproject.toml +12 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python-generated files
|
2 |
+
__pycache__/
|
3 |
+
*.py[oc]
|
4 |
+
build/
|
5 |
+
dist/
|
6 |
+
wheels/
|
7 |
+
*.egg-info
|
8 |
+
|
9 |
+
# Virtual environments
|
10 |
+
.venv
|
11 |
+
|
12 |
+
# Videos and Models ckpts
|
13 |
+
*.pt
|
14 |
+
*.mp4
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.12
|
README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CCTV People Counter
|
2 |
+
|
3 |
+
This program counts the number of people entering through a specified line in a video feed (e.g., store entrance). It uses YOLOv8 for person detection and tracking.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- Real-time person detection using YOLOv8
|
8 |
+
- Object tracking to count unique entries
|
9 |
+
- Customizable counting line position
|
10 |
+
- Optional video output saving
|
11 |
+
- Visual display of count and tracking
|
12 |
+
|
13 |
+
## Setup
|
14 |
+
|
15 |
+
1. Ensure you have Python 3.12+ installed
|
16 |
+
2. Install dependencies:
|
17 |
+
```bash
|
18 |
+
pip install .
|
19 |
+
```
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
Basic usage:
|
24 |
+
```bash
|
25 |
+
python main.py video_path
|
26 |
+
```
|
27 |
+
|
28 |
+
With optional parameters:
|
29 |
+
```bash
|
30 |
+
python main.py video_path --line-position 0.6 --output custom_output.mp4
|
31 |
+
```
|
32 |
+
|
33 |
+
### Parameters
|
34 |
+
|
35 |
+
- `video_path`: Path to input video file (required)
|
36 |
+
- `--line-position`: Position of counting line (0-1, as fraction of frame height, default: 0.5)
|
37 |
+
- `--output`: Path to save output video (default: result.mp4)
|
38 |
+
|
39 |
+
### Controls
|
40 |
+
|
41 |
+
- Press 'q' to quit the program
|
42 |
+
|
43 |
+
## How it Works
|
44 |
+
|
45 |
+
1. Uses YOLOv8 to detect people in each frame
|
46 |
+
2. Tracks detected people across frames
|
47 |
+
3. Counts when a tracked person crosses the specified line from top to bottom
|
48 |
+
4. Displays real-time count and visualizations
|
main.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from collections import defaultdict
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
class PersonCounter:
|
8 |
+
def __init__(self, line_position=0.5):
|
9 |
+
"""Initialize person counter.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
line_position (float): Virtual line position as fraction of frame height (0-1)
|
13 |
+
"""
|
14 |
+
self.model = YOLO("yolov8n.pt") # Load pretrained YOLOv8 model
|
15 |
+
self.tracker = defaultdict(list) # Track object IDs
|
16 |
+
self.crossed_ids = set() # Store IDs that have crossed the line
|
17 |
+
self.line_position = line_position
|
18 |
+
self.count = 0
|
19 |
+
|
20 |
+
def _calculate_center(self, box):
|
21 |
+
"""Calculate center point of detection box."""
|
22 |
+
x1, y1, x2, y2 = box
|
23 |
+
return (x1 + x2) / 2, (y1 + y2) / 2
|
24 |
+
|
25 |
+
def process_frame(self, frame):
|
26 |
+
"""Process a single frame and update count.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
frame: Input frame from video
|
30 |
+
Returns:
|
31 |
+
frame: Annotated frame
|
32 |
+
count: Current count of people who entered
|
33 |
+
"""
|
34 |
+
height, width = frame.shape[:2]
|
35 |
+
line_y = int(height * self.line_position)
|
36 |
+
|
37 |
+
# Draw counting line
|
38 |
+
cv2.line(frame, (0, line_y), (width, line_y), (0, 255, 0), 2)
|
39 |
+
|
40 |
+
# Run detection and tracking
|
41 |
+
results = self.model.track(frame, persist=True, classes=[0]) # class 0 is person
|
42 |
+
|
43 |
+
if results[0].boxes.id is not None:
|
44 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
45 |
+
track_ids = results[0].boxes.id.cpu().numpy().astype(int)
|
46 |
+
|
47 |
+
# Process each detection
|
48 |
+
for box, track_id in zip(boxes, track_ids):
|
49 |
+
# Draw bounding box
|
50 |
+
cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
|
51 |
+
(255, 0, 0), 2)
|
52 |
+
|
53 |
+
# Get center point of the bottom edge of the box (feet position)
|
54 |
+
center_x = (box[0] + box[2]) / 2
|
55 |
+
feet_y = box[3] # Bottom of the bounding box
|
56 |
+
|
57 |
+
# Draw tracking point
|
58 |
+
cv2.circle(frame, (int(center_x), int(feet_y)), 5, (0, 255, 255), -1)
|
59 |
+
|
60 |
+
# Store tracking history
|
61 |
+
if track_id in self.tracker:
|
62 |
+
prev_y = self.tracker[track_id][-1]
|
63 |
+
# Check if person has crossed the line (moving down)
|
64 |
+
if prev_y < line_y and feet_y >= line_y and track_id not in self.crossed_ids:
|
65 |
+
self.crossed_ids.add(track_id)
|
66 |
+
self.count += 1
|
67 |
+
# Draw crossing indicator
|
68 |
+
cv2.circle(frame, (int(center_x), int(line_y)), 8, (0, 0, 255), -1)
|
69 |
+
|
70 |
+
# Update tracking history
|
71 |
+
self.tracker[track_id] = [feet_y] # Only store current position
|
72 |
+
|
73 |
+
# Draw count with bigger font and background
|
74 |
+
count_text = f"Count: {self.count}"
|
75 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
76 |
+
font_scale = 1.5
|
77 |
+
thickness = 3
|
78 |
+
(text_width, text_height), _ = cv2.getTextSize(count_text, font, font_scale, thickness)
|
79 |
+
|
80 |
+
# Draw background rectangle
|
81 |
+
cv2.rectangle(frame, (10, 10), (20 + text_width, 20 + text_height),
|
82 |
+
(0, 0, 0), -1)
|
83 |
+
# Draw text
|
84 |
+
cv2.putText(frame, count_text, (15, 15 + text_height),
|
85 |
+
font, font_scale, (0, 255, 0), thickness)
|
86 |
+
|
87 |
+
return frame, self.count
|
88 |
+
|
89 |
+
def main():
|
90 |
+
parser = argparse.ArgumentParser(description='Count people entering through a line in video.')
|
91 |
+
parser.add_argument('video_path', help='Path to input video file')
|
92 |
+
parser.add_argument('--line-position', type=float, default=0.5,
|
93 |
+
help='Position of counting line (0-1, fraction of frame height)')
|
94 |
+
parser.add_argument('--output', default='result.mp4', help='Path to output video file (default: result.mp4)')
|
95 |
+
args = parser.parse_args()
|
96 |
+
|
97 |
+
# Initialize video capture
|
98 |
+
cap = cv2.VideoCapture(args.video_path)
|
99 |
+
if not cap.isOpened():
|
100 |
+
print(f"Error: Could not open video at {args.video_path}")
|
101 |
+
return
|
102 |
+
|
103 |
+
# Get video properties
|
104 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
105 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
106 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
107 |
+
|
108 |
+
# Initialize video writer
|
109 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
110 |
+
writer = cv2.VideoWriter(args.output, fourcc, fps, (width, height))
|
111 |
+
|
112 |
+
# Initialize person counter
|
113 |
+
counter = PersonCounter(line_position=args.line_position)
|
114 |
+
|
115 |
+
while cap.isOpened():
|
116 |
+
ret, frame = cap.read()
|
117 |
+
if not ret:
|
118 |
+
break
|
119 |
+
|
120 |
+
# Process frame
|
121 |
+
processed_frame, count = counter.process_frame(frame)
|
122 |
+
|
123 |
+
# Display frame
|
124 |
+
cv2.imshow('Frame', processed_frame)
|
125 |
+
|
126 |
+
# Write processed frame to output video
|
127 |
+
writer.write(processed_frame)
|
128 |
+
|
129 |
+
# Break on 'q' press
|
130 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
131 |
+
break
|
132 |
+
|
133 |
+
print(f"Final count: {counter.count}")
|
134 |
+
|
135 |
+
# Clean up
|
136 |
+
cap.release()
|
137 |
+
writer.release()
|
138 |
+
cv2.destroyAllWindows()
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
main()
|
pyproject.toml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "cctv-ppl-count"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"opencv-python",
|
9 |
+
"numpy",
|
10 |
+
"ultralytics",
|
11 |
+
"pip>=25.0.1",
|
12 |
+
]
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|