File size: 87,499 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import builtins
import functools
import inspect
from abc import ABC, abstractmethod
from collections import OrderedDict
from contextlib import contextmanager
from copy import deepcopy
from typing import (Any, Callable, ClassVar, Dict, Generator, Hashable,
Iterable, Iterator, List, Optional, Sequence, Tuple, Union)
import torch
from lightning_utilities import apply_to_collection
from torch import Tensor
from torch.nn import Module, ModuleDict
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import (_flatten, _flatten_dict,
_squeeze_if_scalar, allclose,
dim_zero_cat, dim_zero_max,
dim_zero_mean, dim_zero_min,
dim_zero_sum)
from torchmetrics.utilities.distributed import gather_all_tensors
from torchmetrics.utilities.exceptions import TorchMetricsUserError
from torchmetrics.utilities.imports import (_MATPLOTLIB_AVAILABLE,
_TORCH_GREATER_EQUAL_2_1)
from torchmetrics.utilities.plot import (_AX_TYPE, _PLOT_OUT_TYPE,
plot_single_or_multi_val)
from torchmetrics.utilities.prints import rank_zero_warn
from typing_extensions import Literal
from decoupled_utils import is_torch_xla_available
def jit_distributed_available() -> bool:
"""Determine if distributed mode is initialized."""
return not is_torch_xla_available()
class Metric(Module, ABC):
"""Base class for all metrics present in the Metrics API.
This class is inherited by all metrics and implements the following functionality:
1. Handles the transfer of metric states to correct device
2. Handles the synchronization of metric states across processes
The three core methods of the base class are
* ``add_state()``
* ``forward()``
* ``reset()``
which should almost never be overwritten by child classes. Instead, the following methods should be overwritten
* ``update()``
* ``compute()``
Args:
kwargs: additional keyword arguments, see :ref:`Metric kwargs` for more info.
- compute_on_cpu: If metric state should be stored on CPU during computations. Only works for list states.
- dist_sync_on_step: If metric state should synchronize on ``forward()``. Default is ``False``
- process_group: The process group on which the synchronization is called. Default is the world.
- dist_sync_fn: Function that performs the allgather option on the metric state. Default is an custom
implementation that calls ``torch.distributed.all_gather`` internally.
- distributed_available_fn: Function that checks if the distributed backend is available. Defaults to a
check of ``torch.distributed.is_available()`` and ``torch.distributed.is_initialized()``.
- sync_on_compute: If metric state should synchronize when ``compute`` is called. Default is ``True``
- compute_with_cache: If results from ``compute`` should be cached. Default is ``True``
"""
__jit_ignored_attributes__: ClassVar[List[str]] = ["device"]
__jit_unused_properties__: ClassVar[List[str]] = [
"is_differentiable",
"higher_is_better",
"plot_lower_bound",
"plot_upper_bound",
"plot_legend_name",
"metric_state",
"_update_called",
]
is_differentiable: Optional[bool] = None
higher_is_better: Optional[bool] = None
full_state_update: Optional[bool] = None
plot_lower_bound: Optional[float] = None
plot_upper_bound: Optional[float] = None
plot_legend_name: Optional[str] = None
def __init__(
self,
**kwargs: Any,
) -> None:
super().__init__()
# see (https://github.com/pytorch/pytorch/blob/3e6bb5233f9ca2c5aa55d9cda22a7ee85439aa6e/
# torch/nn/modules/module.py#L227)
torch._C._log_api_usage_once(f"torchmetrics.metric.{self.__class__.__name__}")
# magic patch for `RuntimeError: DataLoader worker (pid(s) 104) exited unexpectedly`
self._TORCH_GREATER_EQUAL_2_1 = bool(_TORCH_GREATER_EQUAL_2_1)
self._device = torch.device("cpu")
self._dtype = torch.get_default_dtype()
self.compute_on_cpu = kwargs.pop("compute_on_cpu", False)
if not isinstance(self.compute_on_cpu, bool):
raise ValueError(
f"Expected keyword argument `compute_on_cpu` to be an `bool` but got {self.compute_on_cpu}"
)
self.dist_sync_on_step = kwargs.pop("dist_sync_on_step", False)
if not isinstance(self.dist_sync_on_step, bool):
raise ValueError(
f"Expected keyword argument `dist_sync_on_step` to be an `bool` but got {self.dist_sync_on_step}"
)
self.process_group = kwargs.pop("process_group", None)
self.dist_sync_fn = kwargs.pop("dist_sync_fn", None)
if self.dist_sync_fn is not None and not callable(self.dist_sync_fn):
raise ValueError(
f"Expected keyword argument `dist_sync_fn` to be an callable function but got {self.dist_sync_fn}"
)
self.distributed_available_fn = kwargs.pop("distributed_available_fn", None) or jit_distributed_available
self.sync_on_compute = kwargs.pop("sync_on_compute", True)
if not isinstance(self.sync_on_compute, bool):
raise ValueError(
f"Expected keyword argument `sync_on_compute` to be a `bool` but got {self.sync_on_compute}"
)
self.compute_with_cache = kwargs.pop("compute_with_cache", True)
if not isinstance(self.compute_with_cache, bool):
raise ValueError(
f"Expected keyword argument `compute_with_cache` to be a `bool` but got {self.compute_with_cache}"
)
if kwargs:
kwargs_ = [f"`{a}`" for a in sorted(kwargs)]
raise ValueError(f"Unexpected keyword arguments: {', '.join(kwargs_)}")
# initialize
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore[method-assign]
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore[method-assign]
self._computed = None
self._forward_cache = None
self._update_count = 0
self._to_sync = self.sync_on_compute
self._should_unsync = True
self._enable_grad = False
self._dtype_convert = False
# initialize state
self._defaults: Dict[str, Union[List, Tensor]] = {}
self._persistent: Dict[str, bool] = {}
self._reductions: Dict[str, Union[str, Callable[..., Any], None]] = {}
# state management
self._is_synced = False
self._cache: Optional[Dict[str, Union[List[Tensor], Tensor]]] = None
@property
def _update_called(self) -> bool:
rank_zero_warn(
"This property will be removed in 2.0.0. Use `Metric.updated_called` instead.",
DeprecationWarning,
stacklevel=2,
)
return self.update_called
@property
def update_called(self) -> bool:
"""Returns `True` if `update` or `forward` has been called initialization or last `reset`."""
return self._update_count > 0
@property
def update_count(self) -> int:
"""Get the number of times `update` and/or `forward` has been called since initialization or last `reset`."""
return self._update_count
@property
def metric_state(self) -> Dict[str, Union[List[Tensor], Tensor]]:
"""Get the current state of the metric."""
return {attr: getattr(self, attr) for attr in self._defaults}
def add_state(
self,
name: str,
default: Union[list, Tensor],
dist_reduce_fx: Optional[Union[str, Callable]] = None,
persistent: bool = False,
) -> None:
"""Add metric state variable. Only used by subclasses.
Metric state variables are either `:class:`~torch.Tensor` or an empty list, which can be appended to by the
metric. Each state variable must have a unique name associated with it. State variables are accessible as
attributes of the metric i.e, if ``name`` is ``"my_state"`` then its value can be accessed from an instance
``metric`` as ``metric.my_state``. Metric states behave like buffers and parameters of :class:`~torch.nn.Module`
as they are also updated when ``.to()`` is called. Unlike parameters and buffers, metric states are not by
default saved in the modules :attr:`~torch.nn.Module.state_dict`.
Args:
name: The name of the state variable. The variable will then be accessible at ``self.name``.
default: Default value of the state; can either be a :class:`~torch.Tensor` or an empty list.
The state will be reset to this value when ``self.reset()`` is called.
dist_reduce_fx (Optional): Function to reduce state across multiple processes in distributed mode.
If value is ``"sum"``, ``"mean"``, ``"cat"``, ``"min"`` or ``"max"`` we will use ``torch.sum``,
``torch.mean``, ``torch.cat``, ``torch.min`` and ``torch.max``` respectively, each with argument
``dim=0``. Note that the ``"cat"`` reduction only makes sense if the state is a list, and not
a tensor. The user can also pass a custom function in this parameter.
persistent (Optional): whether the state will be saved as part of the modules ``state_dict``.
Default is ``False``.
Note:
Setting ``dist_reduce_fx`` to None will return the metric state synchronized across different processes.
However, there won't be any reduction function applied to the synchronized metric state.
The metric states would be synced as follows
- If the metric state is :class:`~torch.Tensor`, the synced value will be a stacked :class:`~torch.Tensor`
across the process dimension if the metric state was a :class:`~torch.Tensor`. The original
:class:`~torch.Tensor` metric state retains dimension and hence the synchronized output will be of shape
``(num_process, ...)``.
- If the metric state is a ``list``, the synced value will be a ``list`` containing the
combined elements from all processes.
Note:
When passing a custom function to ``dist_reduce_fx``, expect the synchronized metric state to follow
the format discussed in the above note.
Note:
The values inserted into a list state are deleted whenever :meth:`~Metric.reset` is called. This allows
device memory to be automatically reallocated, but may produce unexpected effects when referencing list
states. To retain such values after :meth:`~Metric.reset` is called, you must first copy them to another
object.
Raises:
ValueError:
If ``default`` is not a ``tensor`` or an ``empty list``.
ValueError:
If ``dist_reduce_fx`` is not callable or one of ``"mean"``, ``"sum"``, ``"cat"``, ``"min"``,
``"max"`` or ``None``.
"""
if not isinstance(default, (Tensor, list)) or (isinstance(default, list) and default):
raise ValueError("state variable must be a tensor or any empty list (where you can append tensors)")
if dist_reduce_fx == "sum":
dist_reduce_fx = dim_zero_sum
elif dist_reduce_fx == "mean":
dist_reduce_fx = dim_zero_mean
elif dist_reduce_fx == "max":
dist_reduce_fx = dim_zero_max
elif dist_reduce_fx == "min":
dist_reduce_fx = dim_zero_min
elif dist_reduce_fx == "cat":
dist_reduce_fx = dim_zero_cat
elif dist_reduce_fx is not None and not callable(dist_reduce_fx):
raise ValueError("`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', 'min', 'max', None]")
if isinstance(default, Tensor):
default = default.contiguous()
setattr(self, name, default)
self._defaults[name] = deepcopy(default)
self._persistent[name] = persistent
self._reductions[name] = dist_reduce_fx
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Aggregate and evaluate batch input directly.
Serves the dual purpose of both computing the metric on the current batch of inputs but also add the batch
statistics to the overall accumululating metric state. Input arguments are the exact same as corresponding
``update`` method. The returned output is the exact same as the output of ``compute``.
Args:
args: Any arguments as required by the metric ``update`` method.
kwargs: Any keyword arguments as required by the metric ``update`` method.
Returns:
The output of the ``compute`` method evaluated on the current batch.
Raises:
TorchMetricsUserError:
If the metric is already synced and ``forward`` is called again.
"""
# check if states are already synced
if self._is_synced:
raise TorchMetricsUserError(
"The Metric shouldn't be synced when performing ``forward``. "
"HINT: Did you forget to call ``unsync`` ?."
)
if self.full_state_update or self.full_state_update is None or self.dist_sync_on_step:
self._forward_cache = self._forward_full_state_update(*args, **kwargs)
else:
self._forward_cache = self._forward_reduce_state_update(*args, **kwargs)
return self._forward_cache
def _forward_full_state_update(self, *args: Any, **kwargs: Any) -> Any:
"""Forward computation using two calls to `update`.
Doing this secures that metrics that need access to the full metric state during `update` works as expected.
This is the most safe method to use for any metric but also the slower version of the two forward
implementations.
"""
# global accumulation
self.update(*args, **kwargs)
_update_count = self._update_count
self._to_sync = self.dist_sync_on_step
# skip restore cache operation from compute as cache is stored below.
self._should_unsync = False
# skip computing on cpu for the batch
_temp_compute_on_cpu = self.compute_on_cpu
self.compute_on_cpu = False
# save context before switch
cache = self._copy_state_dict()
# call reset, update, compute, on single batch
self._enable_grad = True # allow grads for batch computation
self.reset()
self.update(*args, **kwargs)
batch_val = self.compute()
# restore context
for attr, val in cache.items():
setattr(self, attr, val)
self._update_count = _update_count
# restore context
self._is_synced = False
self._should_unsync = True
self._to_sync = self.sync_on_compute
self._computed = None
self._enable_grad = False
self.compute_on_cpu = _temp_compute_on_cpu
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return batch_val
def _forward_reduce_state_update(self, *args: Any, **kwargs: Any) -> Any:
"""Forward computation using single call to `update`.
This can be done when the global metric state is a sinple reduction of batch states. This can be unsafe for
certain metric cases but is also the fastest way to both accumulate globally and compute locally.
"""
# store global state and reset to default
global_state = self._copy_state_dict()
_update_count = self._update_count
self.reset()
# local synchronization settings
self._to_sync = self.dist_sync_on_step
self._should_unsync = False
_temp_compute_on_cpu = self.compute_on_cpu
self.compute_on_cpu = False
self._enable_grad = True # allow grads for batch computation
# calculate batch state and compute batch value
self.update(*args, **kwargs)
batch_val = self.compute()
# reduce batch and global state
self._update_count = _update_count + 1
with torch.no_grad():
self._reduce_states(global_state)
# restore context
self._is_synced = False
self._should_unsync = True
self._to_sync = self.sync_on_compute
self._computed = None
self._enable_grad = False
self.compute_on_cpu = _temp_compute_on_cpu
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return batch_val
def _reduce_states(self, incoming_state: Dict[str, Any]) -> None:
"""Add an incoming metric state to the current state of the metric.
Args:
incoming_state: a dict containing a metric state similar metric itself
"""
for attr in self._defaults:
local_state = getattr(self, attr)
global_state = incoming_state[attr]
reduce_fn = self._reductions[attr]
if reduce_fn == dim_zero_sum:
reduced = global_state + local_state
elif reduce_fn == dim_zero_mean:
reduced = ((self._update_count - 1) * global_state + local_state).float() / self._update_count
elif reduce_fn == dim_zero_max:
reduced = torch.max(global_state, local_state)
elif reduce_fn == dim_zero_min:
reduced = torch.min(global_state, local_state)
elif reduce_fn == dim_zero_cat:
if isinstance(global_state, Tensor):
reduced = torch.cat([global_state, local_state])
else:
reduced = global_state + local_state
elif reduce_fn is None and isinstance(global_state, Tensor):
reduced = torch.stack([global_state, local_state])
elif reduce_fn is None and isinstance(global_state, list):
reduced = _flatten([global_state, local_state])
elif reduce_fn and callable(reduce_fn):
reduced = reduce_fn(torch.stack([global_state, local_state]))
else:
raise TypeError(f"Unsupported reduce_fn: {reduce_fn}")
setattr(self, attr, reduced)
def _sync_dist(self, dist_sync_fn: Callable = gather_all_tensors, process_group: Optional[Any] = None) -> None:
input_dict = {attr: getattr(self, attr) for attr in self._reductions}
for attr, reduction_fn in self._reductions.items():
# pre-concatenate metric states that are lists to reduce number of all_gather operations
if reduction_fn == dim_zero_cat and isinstance(input_dict[attr], list) and len(input_dict[attr]) > 1:
input_dict[attr] = [dim_zero_cat(input_dict[attr])]
# cornor case in distributed settings where a rank have not received any data, create empty to concatenate
if (
self._TORCH_GREATER_EQUAL_2_1
and reduction_fn == dim_zero_cat
and isinstance(input_dict[attr], list)
and len(input_dict[attr]) == 0
):
input_dict[attr] = [torch.tensor([], device=self.device, dtype=self.dtype)]
output_dict = apply_to_collection(
input_dict,
Tensor,
dist_sync_fn,
group=process_group or self.process_group,
)
for attr, reduction_fn in self._reductions.items():
# pre-processing ops (stack or flatten for inputs)
if isinstance(output_dict[attr], list) and len(output_dict[attr]) == 0:
setattr(self, attr, [])
continue
if isinstance(output_dict[attr][0], Tensor):
output_dict[attr] = torch.stack(output_dict[attr])
elif isinstance(output_dict[attr][0], list):
output_dict[attr] = _flatten(output_dict[attr])
if not (callable(reduction_fn) or reduction_fn is None):
raise TypeError("reduction_fn must be callable or None")
reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr]
setattr(self, attr, reduced)
def _wrap_update(self, update: Callable) -> Callable:
@functools.wraps(update)
def wrapped_func(*args: Any, **kwargs: Any) -> None:
self._computed = None
self._update_count += 1
with torch.set_grad_enabled(self._enable_grad):
try:
update(*args, **kwargs)
except RuntimeError as err:
if "Expected all tensors to be on" in str(err):
raise RuntimeError(
"Encountered different devices in metric calculation (see stacktrace for details)."
" This could be due to the metric class not being on the same device as input."
f" Instead of `metric={self.__class__.__name__}(...)` try to do"
f" `metric={self.__class__.__name__}(...).to(device)` where"
" device corresponds to the device of the input."
) from err
raise err
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return wrapped_func
def _move_list_states_to_cpu(self) -> None:
"""Move list states to cpu to save GPU memory."""
for key in self._defaults:
current_val = getattr(self, key)
if isinstance(current_val, Sequence):
setattr(self, key, [cur_v.to("cpu") for cur_v in current_val])
def sync(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
distributed_available: Optional[Callable] = None,
) -> None:
"""Sync function for manually controlling when metrics states should be synced across processes.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: `None` (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
distributed_available: Function to determine if we are running inside a distributed setting
Raises:
TorchMetricsUserError:
If the metric is already synced and ``sync`` is called again.
"""
if self._is_synced and should_sync:
raise TorchMetricsUserError("The Metric has already been synced.")
if distributed_available is None and self.distributed_available_fn is not None:
distributed_available = self.distributed_available_fn
is_distributed = distributed_available() if callable(distributed_available) else None
if not should_sync or not is_distributed:
return
if dist_sync_fn is None:
dist_sync_fn = gather_all_tensors
# cache prior to syncing
self._cache = self._copy_state_dict()
# sync
self._sync_dist(dist_sync_fn, process_group=process_group)
self._is_synced = True
def unsync(self, should_unsync: bool = True) -> None:
"""Unsync function for manually controlling when metrics states should be reverted back to their local states.
Args:
should_unsync: Whether to perform unsync
"""
if not should_unsync:
return
if not self._is_synced:
raise TorchMetricsUserError("The Metric has already been un-synced.")
if self._cache is None:
raise TorchMetricsUserError("The internal cache should exist to unsync the Metric.")
# if we synced, restore to cache so that we can continue to accumulate un-synced state
for attr, val in self._cache.items():
setattr(self, attr, val)
self._is_synced = False
self._cache = None
@contextmanager
def sync_context(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
should_unsync: bool = True,
distributed_available: Optional[Callable] = None,
) -> Generator:
"""Context manager to synchronize states.
This context manager is used in distributed setting and makes sure that the local cache states are restored
after yielding the synchronized state.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: `None` (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
should_unsync: Whether to restore the cache state so that the metrics can
continue to be accumulated.
distributed_available: Function to determine if we are running inside a distributed setting
"""
self.sync(
dist_sync_fn=dist_sync_fn,
process_group=process_group,
should_sync=should_sync,
distributed_available=distributed_available,
)
yield
self.unsync(should_unsync=self._is_synced and should_unsync)
def _wrap_compute(self, compute: Callable) -> Callable:
@functools.wraps(compute)
def wrapped_func(*args: Any, **kwargs: Any) -> Any:
if not self.update_called:
rank_zero_warn(
f"The ``compute`` method of metric {self.__class__.__name__}"
" was called before the ``update`` method which may lead to errors,"
" as metric states have not yet been updated.",
UserWarning,
)
# return cached value
if self._computed is not None:
return self._computed
# compute relies on the sync context manager to gather the states across processes and apply reduction
# if synchronization happened, the current rank accumulated states will be restored to keep
# accumulation going if ``should_unsync=True``,
with self.sync_context(
dist_sync_fn=self.dist_sync_fn,
should_sync=self._to_sync,
should_unsync=self._should_unsync,
):
value = _squeeze_if_scalar(compute(*args, **kwargs))
# clone tensor to avoid in-place operations after compute, altering already computed results
value = apply_to_collection(value, Tensor, lambda x: x.clone())
if self.compute_with_cache:
self._computed = value
return value
return wrapped_func
@abstractmethod
def update(self, *_: Any, **__: Any) -> None:
"""Override this method to update the state variables of your metric class."""
@abstractmethod
def compute(self) -> Any:
"""Override this method to compute the final metric value.
This method will automatically synchronize state variables when running in distributed backend.
"""
def plot(self, *_: Any, **__: Any) -> Any:
"""Override this method plot the metric value."""
raise NotImplementedError
def _plot(
self,
val: Optional[Union[Tensor, Sequence[Tensor], Dict[str, Tensor], Sequence[Dict[str, Tensor]]]] = None,
ax: Optional[_AX_TYPE] = None,
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
"""
val = val if val is not None else self.compute()
fig, ax = plot_single_or_multi_val(
val,
ax=ax,
higher_is_better=self.higher_is_better,
name=self.__class__.__name__,
lower_bound=self.plot_lower_bound,
upper_bound=self.plot_upper_bound,
legend_name=self.plot_legend_name,
)
return fig, ax
def reset(self) -> None:
"""Reset metric state variables to their default value."""
self._update_count = 0
self._forward_cache = None
self._computed = None
for attr, default in self._defaults.items():
current_val = getattr(self, attr)
if isinstance(default, Tensor):
setattr(self, attr, default.detach().clone().to(current_val.device))
else:
getattr(self, attr).clear() # delete/free list items
# reset internal states
self._cache = None
self._is_synced = False
def clone(self) -> "Metric":
"""Make a copy of the metric."""
return deepcopy(self)
def __getstate__(self) -> Dict[str, Any]:
"""Get the current state, including all metric states, for the metric.
Used for loading and saving a metric.
"""
# ignore update and compute functions for pickling
return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute", "_update_signature"]}
def __setstate__(self, state: Dict[str, Any]) -> None:
"""Set the state of the metric, based on a input state.
Used for loading and saving a metric.
"""
# manually restore update and compute functions for pickling
self.__dict__.update(state)
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore[method-assign]
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore[method-assign]
def __setattr__(self, name: str, value: Any) -> None:
"""Overwrite default method to prevent specific attributes from being set by user."""
if name in (
"higher_is_better",
"is_differentiable",
"full_state_update",
"plot_lower_bound",
"plot_upper_bound",
"plot_legend_name",
):
raise RuntimeError(f"Can't change const `{name}`.")
super().__setattr__(name, value)
@property
def device(self) -> "torch.device":
"""Return the device of the metric."""
return self._device
@property
def dtype(self) -> "torch.dtype":
"""Return the default dtype of the metric."""
return self._dtype
def type(self, dst_type: Union[str, torch.dtype]) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def float(self) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def double(self) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def half(self) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def set_dtype(self, dst_type: Union[str, torch.dtype]) -> "Metric":
"""Transfer all metric state to specific dtype. Special version of standard `type` method.
Arguments:
dst_type: the desired type as string or dtype object
"""
self._dtype_convert = True
out = super().type(dst_type)
out._dtype_convert = False
return out
def _apply(self, fn: Callable, exclude_state: Sequence[str] = "") -> Module:
"""Overwrite `_apply` function such that we can also move metric states to the correct device.
This method is called by the base ``nn.Module`` class whenever `.to`, `.cuda`, `.float`, `.half` etc. methods
are called. Dtype conversion is garded and will only happen through the special `set_dtype` method.
Args:
fn: the function to apply
exclude_state: list of state variables to exclude from applying the function, that then needs to be handled
by the metric class itself.
"""
this = super()._apply(fn)
fs = str(fn)
cond = any(f in fs for f in ["Module.type", "Module.half", "Module.float", "Module.double", "Module.bfloat16"])
if not self._dtype_convert and cond:
return this
# Also apply fn to metric states and defaults
for key, value in this._defaults.items():
if key in exclude_state:
continue
if isinstance(value, Tensor):
this._defaults[key] = fn(value)
elif isinstance(value, Sequence):
this._defaults[key] = [fn(v) for v in value]
current_val = getattr(this, key)
if isinstance(current_val, Tensor):
setattr(this, key, fn(current_val))
elif isinstance(current_val, Sequence):
setattr(this, key, [fn(cur_v) for cur_v in current_val])
else:
raise TypeError(
f"Expected metric state to be either a Tensor or a list of Tensor, but encountered {current_val}"
)
# make sure to update the device attribute
# if the dummy tensor moves device by fn function we should also update the attribute
_dummy_tensor = fn(torch.zeros(1, device=self.device))
self._device = _dummy_tensor.device
self._dtype = _dummy_tensor.dtype
# Additional apply to forward cache and computed attributes (may be nested)
if this._computed is not None:
this._computed = apply_to_collection(this._computed, Tensor, fn)
if this._forward_cache is not None:
this._forward_cache = apply_to_collection(this._forward_cache, Tensor, fn)
return this
def persistent(self, mode: bool = False) -> None:
"""Change post-init if metric states should be saved to its state_dict."""
for key in self._persistent:
self._persistent[key] = mode
def state_dict( # type: ignore[override] # todo
self,
destination: Optional[Dict[str, Any]] = None,
prefix: str = "",
keep_vars: bool = False,
) -> Dict[str, Any]:
"""Get the current state of metric as an dictionary.
Args:
destination: Optional dictionary, that if provided, the state of module will be updated into the dict and
the same object is returned. Otherwise, an ``OrderedDict`` will be created and returned.
prefix: optional string, a prefix added to parameter and buffer names to compose the keys in state_dict.
keep_vars: by default the :class:`~torch.Tensor` returned in the state dict are detached from autograd.
If set to ``True``, detaching will not be performed.
"""
destination: Dict[str, Union[torch.Tensor, List, Any]] = super().state_dict(
destination=destination, # type: ignore[arg-type]
prefix=prefix,
keep_vars=keep_vars,
)
# Register metric states to be part of the state_dict
for key in self._defaults:
if not self._persistent[key]:
continue
current_val = getattr(self, key)
if not keep_vars:
if isinstance(current_val, Tensor):
current_val = current_val.detach()
elif isinstance(current_val, list):
current_val = [cur_v.detach() if isinstance(cur_v, Tensor) else cur_v for cur_v in current_val]
destination[prefix + key] = deepcopy(current_val)
return destination
def _copy_state_dict(self) -> Dict[str, Union[Tensor, List[Any]]]:
"""Copy the current state values."""
cache: Dict[str, Union[Tensor, List[Any]]] = {}
for attr in self._defaults:
current_value = getattr(self, attr)
if isinstance(current_value, Tensor):
cache[attr] = current_value.detach().clone().to(current_value.device)
else:
cache[attr] = [ # safely copy (non-graph leaf) Tensor elements
_.detach().clone().to(_.device) if isinstance(_, Tensor) else deepcopy(_) for _ in current_value
]
return cache
def _load_from_state_dict(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
) -> None:
"""Load metric states from state_dict."""
for key in self._defaults:
name = prefix + key
if name in state_dict:
setattr(self, key, state_dict.pop(name))
super()._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
def _filter_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
"""Filter kwargs such that they match the update signature of the metric."""
# filter all parameters based on update signature except those of
# types `VAR_POSITIONAL` for `* args` and `VAR_KEYWORD` for `** kwargs`
_params = (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD)
_sign_params = self._update_signature.parameters
filtered_kwargs = {
k: v for k, v in kwargs.items() if (k in _sign_params and _sign_params[k].kind not in _params)
}
exists_var_keyword = any(v.kind == inspect.Parameter.VAR_KEYWORD for v in _sign_params.values())
# if no kwargs filtered, return all kwargs as default
if not filtered_kwargs and not exists_var_keyword:
# no kwargs in update signature -> don't return any kwargs
return {}
if exists_var_keyword:
# kwargs found in update signature -> return all kwargs to be sure to not omit any.
# filtering logic is likely implemented within the update call.
return kwargs
return filtered_kwargs
def __hash__(self) -> int:
"""Return an unique hash of the metric.
The hash depends on both the class itself but also the current metric state, which therefore enforces that two
instances of the same metrics never have the same hash even if they have been updated on the same data.
"""
# we need to add the id here, since PyTorch requires a module hash to be unique.
# Internally, PyTorch nn.Module relies on that for children discovery
# (see https://github.com/pytorch/pytorch/blob/v1.9.0/torch/nn/modules/module.py#L1544)
# For metrics that include tensors it is not a problem,
# since their hash is unique based on the memory location but we cannot rely on that for every metric.
hash_vals = [self.__class__.__name__, id(self)]
for key in self._defaults:
val = getattr(self, key)
# Special case: allow list values, so long
# as their elements are hashable
if hasattr(val, "__iter__") and not isinstance(val, Tensor):
hash_vals.extend(val)
else:
hash_vals.append(val)
return hash(tuple(hash_vals))
def __add__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the addition operator."""
return CompositionalMetric(torch.add, self, other)
def __and__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical and operator."""
return CompositionalMetric(torch.bitwise_and, self, other)
def __eq__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric": # type: ignore[override]
"""Construct compositional metric using the equal operator."""
return CompositionalMetric(torch.eq, self, other)
def __floordiv__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the floor division operator."""
return CompositionalMetric(torch.floor_divide, self, other)
def __ge__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the greater than or equal operator."""
return CompositionalMetric(torch.ge, self, other)
def __gt__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the greater than operator."""
return CompositionalMetric(torch.gt, self, other)
def __le__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the less than or equal operator."""
return CompositionalMetric(torch.le, self, other)
def __lt__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the less than operator."""
return CompositionalMetric(torch.lt, self, other)
def __matmul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the matrix multiplication operator."""
return CompositionalMetric(torch.matmul, self, other)
def __mod__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the remainder operator."""
return CompositionalMetric(torch.fmod, self, other)
def __mul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the multiplication operator."""
return CompositionalMetric(torch.mul, self, other)
def __ne__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric": # type: ignore[override]
"""Construct compositional metric using the not equal operator."""
return CompositionalMetric(torch.ne, self, other)
def __or__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical or operator."""
return CompositionalMetric(torch.bitwise_or, self, other)
def __pow__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the exponential/power operator."""
return CompositionalMetric(torch.pow, self, other)
def __radd__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the addition operator."""
return CompositionalMetric(torch.add, other, self)
def __rand__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical and operator."""
# swap them since bitwise_and only supports that way and it's commutative
return CompositionalMetric(torch.bitwise_and, self, other)
def __rfloordiv__(self, other: "CompositionalMetric") -> "Metric":
"""Construct compositional metric using the floor division operator."""
return CompositionalMetric(torch.floor_divide, other, self)
def __rmatmul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the matrix multiplication operator."""
return CompositionalMetric(torch.matmul, other, self)
def __rmod__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the remainder operator."""
return CompositionalMetric(torch.fmod, other, self)
def __rmul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the multiplication operator."""
return CompositionalMetric(torch.mul, other, self)
def __ror__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical or operator."""
return CompositionalMetric(torch.bitwise_or, other, self)
def __rpow__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the exponential/power operator."""
return CompositionalMetric(torch.pow, other, self)
def __rsub__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the subtraction operator."""
return CompositionalMetric(torch.sub, other, self)
def __rtruediv__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the true divide operator."""
return CompositionalMetric(torch.true_divide, other, self)
def __rxor__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical xor operator."""
return CompositionalMetric(torch.bitwise_xor, other, self)
def __sub__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the subtraction operator."""
return CompositionalMetric(torch.sub, self, other)
def __truediv__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the true divide operator."""
return CompositionalMetric(torch.true_divide, self, other)
def __xor__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical xor operator."""
return CompositionalMetric(torch.bitwise_xor, self, other)
def __abs__(self) -> "CompositionalMetric":
"""Construct compositional metric using the absolute operator."""
return CompositionalMetric(torch.abs, self, None)
def __inv__(self) -> "CompositionalMetric":
"""Construct compositional metric using the not operator."""
return CompositionalMetric(torch.bitwise_not, self, None)
def __invert__(self) -> "CompositionalMetric":
"""Construct compositional metric using the not operator."""
return self.__inv__()
def __neg__(self) -> "CompositionalMetric":
"""Construct compositional metric using absolute negative operator."""
return CompositionalMetric(_neg, self, None)
def __pos__(self) -> "CompositionalMetric":
"""Construct compositional metric using absolute operator."""
return CompositionalMetric(torch.abs, self, None)
def __getitem__(self, idx: int) -> "CompositionalMetric":
"""Construct compositional metric using the get item operator."""
return CompositionalMetric(lambda x: x[idx], self, None)
def __getnewargs__(self) -> Tuple:
"""Needed method for construction of new metrics __new__ method."""
return tuple(
Metric.__str__(self),
)
__iter__ = None
def _neg(x: Tensor) -> Tensor:
return -torch.abs(x)
class BaseAggregator(Metric):
"""Base class for aggregation metrics.
Args:
fn: string specifying the reduction function
default_value: default tensor value to use for the metric state
nan_strategy: options:
- ``'error'``: if any `nan` values are encountered will give a RuntimeError
- ``'warn'``: if any `nan` values are encountered will give a warning and continue
- ``'ignore'``: all `nan` values are silently removed
- a float: if a float is provided will impute any `nan` values with this value
state_name: name of the metric state
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float
"""
is_differentiable = None
higher_is_better = None
full_state_update: bool = False
def __init__(
self,
fn: Union[Callable, str],
default_value: Union[Tensor, List],
nan_strategy: Union[str, float] = "error",
state_name: str = "value",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
allowed_nan_strategy = ("error", "warn", "ignore")
if nan_strategy not in allowed_nan_strategy and not isinstance(nan_strategy, float):
raise ValueError(
f"Arg `nan_strategy` should either be a float or one of {allowed_nan_strategy}"
f" but got {nan_strategy}."
)
self.nan_strategy = nan_strategy
self.add_state(state_name, default=default_value, dist_reduce_fx=fn)
self.state_name = state_name
def _cast_and_nan_check_input(
self, x: Union[float, Tensor], weight: Optional[Union[float, Tensor]] = None
) -> Tuple[Tensor, Tensor]:
"""Convert input ``x`` to a tensor and check for Nans."""
if not isinstance(x, Tensor):
x = torch.as_tensor(x, dtype=self.dtype, device=self.device)
if weight is not None and not isinstance(weight, Tensor):
weight = torch.as_tensor(weight, dtype=self.dtype, device=self.device)
nans = torch.isnan(x)
if weight is not None:
nans_weight = torch.isnan(weight)
else:
nans_weight = torch.zeros_like(nans).bool()
weight = torch.ones_like(x)
if nans.any() or nans_weight.any():
if self.nan_strategy == "error":
raise RuntimeError("Encountered `nan` values in tensor")
if self.nan_strategy in ("ignore", "warn"):
if self.nan_strategy == "warn":
rank_zero_warn("Encountered `nan` values in tensor. Will be removed.", UserWarning)
x = x[~(nans | nans_weight)]
weight = weight[~(nans | nans_weight)]
else:
if not isinstance(self.nan_strategy, float):
raise ValueError(f"`nan_strategy` shall be float but you pass {self.nan_strategy}")
x[nans | nans_weight] = self.nan_strategy
weight[nans | nans_weight] = self.nan_strategy
return x.to(self.dtype), weight.to(self.dtype)
def update(self, value: Union[float, Tensor]) -> None:
"""Overwrite in child class."""
def compute(self) -> Tensor:
"""Compute the aggregated value."""
return getattr(self, self.state_name)
class MeanMetric(BaseAggregator):
"""Aggregate a stream of value into their mean value.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``value`` (:class:`~float` or :class:`~torch.Tensor`): a single float or an tensor of float values with
arbitrary shape ``(...,)``.
- ``weight`` (:class:`~float` or :class:`~torch.Tensor`): a single float or an tensor of float value with
arbitrary shape ``(...,)``. Needs to be broadcastable with the shape of ``value`` tensor.
As output of `forward` and `compute` the metric returns the following output
- ``agg`` (:class:`~torch.Tensor`): scalar float tensor with aggregated (weighted) mean over all inputs received
Args:
nan_strategy: options:
- ``'error'``: if any `nan` values are encountered will give a RuntimeError
- ``'warn'``: if any `nan` values are encountered will give a warning and continue
- ``'ignore'``: all `nan` values are silently removed
- a float: if a float is provided will impute any `nan` values with this value
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float
Example:
>>> from torchmetrics.aggregation import MeanMetric
>>> metric = MeanMetric()
>>> metric.update(1)
>>> metric.update(torch.tensor([2, 3]))
>>> metric.compute()
tensor(2.)
"""
mean_value: Tensor
def __init__(
self,
nan_strategy: Union[str, float] = "warn",
**kwargs: Any,
) -> None:
super().__init__(
"sum",
torch.tensor(0.0, dtype=torch.get_default_dtype()),
nan_strategy,
state_name="mean_value",
**kwargs,
)
self.add_state("weight", default=torch.tensor(0.0, dtype=torch.get_default_dtype()), dist_reduce_fx="sum")
def update(self, value: Union[float, Tensor], weight: Union[float, Tensor] = 1.0) -> None:
"""Update state with data.
Args:
value: Either a float or tensor containing data. Additional tensor
dimensions will be flattened
weight: Either a float or tensor containing weights for calculating
the average. Shape of weight should be able to broadcast with
the shape of `value`. Default to `1.0` corresponding to simple
harmonic average.
"""
# broadcast weight to value shape
if not isinstance(value, Tensor):
value = torch.as_tensor(value, dtype=self.dtype, device=self.device)
if weight is not None and not isinstance(weight, Tensor):
weight = torch.as_tensor(weight, dtype=self.dtype, device=self.device)
weight = torch.broadcast_to(weight, value.shape)
# OLD:
# value, weight = self._cast_and_nan_check_input(value, weight)
# NEW:
value, weight = value.to(self.dtype), weight.to(self.dtype)
# value, weight = torch.where(torch.isnan(value), torch.tensor(0.0, dtype=self.dtype, device=self.device), value), torch.where(torch.isnan(weight), torch.tensor(0.0, dtype=self.dtype, device=self.device), weight)
self.mean_value += (value * weight).sum()
self.weight += weight.sum()
def compute(self) -> Tensor:
"""Compute the aggregated value."""
return self.mean_value / self.weight
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torchmetrics.aggregation import MeanMetric
>>> metric = MeanMetric()
>>> metric.update([1, 2, 3])
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torchmetrics.aggregation import MeanMetric
>>> metric = MeanMetric()
>>> values = [ ]
>>> for i in range(10):
... values.append(metric([i, i+1]))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
class MetricCollection(ModuleDict):
"""MetricCollection class can be used to chain metrics that have the same call pattern into one single class.
Args:
metrics: One of the following
* list or tuple (sequence): if metrics are passed in as a list or tuple, will use the metrics class name
as key for output dict. Therefore, two metrics of the same class cannot be chained this way.
* arguments: similar to passing in as a list, metrics passed in as arguments will use their metric
class name as key for the output dict.
* dict: if metrics are passed in as a dict, will use each key in the dict as key for output dict.
Use this format if you want to chain together multiple of the same metric with different parameters.
Note that the keys in the output dict will be sorted alphabetically.
prefix: a string to append in front of the keys of the output dict
postfix: a string to append after the keys of the output dict
compute_groups:
By default the MetricCollection will try to reduce the computations needed for the metrics in the collection
by checking if they belong to the same **compute group**. All metrics in a compute group share the same
metric state and are therefore only different in their compute step e.g. accuracy, precision and recall
can all be computed from the true positives/negatives and false positives/negatives. By default,
this argument is ``True`` which enables this feature. Set this argument to `False` for disabling
this behaviour. Can also be set to a list of lists of metrics for setting the compute groups yourself.
.. note::
The compute groups feature can significantly speedup the calculation of metrics under the right conditions.
First, the feature is only available when calling the ``update`` method and not when calling ``forward`` method
due to the internal logic of ``forward`` preventing this. Secondly, since we compute groups share metric
states by reference, calling ``.items()``, ``.values()`` etc. on the metric collection will break this
reference and a copy of states are instead returned in this case (reference will be reestablished on the next
call to ``update``).
.. note::
Metric collections can be nested at initialization (see last example) but the output of the collection will
still be a single flatten dictionary combining the prefix and postfix arguments from the nested collection.
Raises:
ValueError:
If one of the elements of ``metrics`` is not an instance of ``pl.metrics.Metric``.
ValueError:
If two elements in ``metrics`` have the same ``name``.
ValueError:
If ``metrics`` is not a ``list``, ``tuple`` or a ``dict``.
ValueError:
If ``metrics`` is ``dict`` and additional_metrics are passed in.
ValueError:
If ``prefix`` is set and it is not a string.
ValueError:
If ``postfix`` is set and it is not a string.
Example::
In the most basic case, the metrics can be passed in as a list or tuple. The keys of the output dict will be
the same as the class name of the metric:
>>> from torch import tensor
>>> from pprint import pprint
>>> from torchmetrics import MetricCollection
>>> from torchmetrics.regression import MeanSquaredError
>>> from torchmetrics.classification import MulticlassAccuracy, MulticlassPrecision, MulticlassRecall
>>> target = tensor([0, 2, 0, 2, 0, 1, 0, 2])
>>> preds = tensor([2, 1, 2, 0, 1, 2, 2, 2])
>>> metrics = MetricCollection([MulticlassAccuracy(num_classes=3, average='micro'),
... MulticlassPrecision(num_classes=3, average='macro'),
... MulticlassRecall(num_classes=3, average='macro')])
>>> metrics(preds, target) # doctest: +NORMALIZE_WHITESPACE
{'MulticlassAccuracy': tensor(0.1250),
'MulticlassPrecision': tensor(0.0667),
'MulticlassRecall': tensor(0.1111)}
Example::
Alternatively, metrics can be passed in as arguments. The keys of the output dict will be the same as the
class name of the metric:
>>> metrics = MetricCollection(MulticlassAccuracy(num_classes=3, average='micro'),
... MulticlassPrecision(num_classes=3, average='macro'),
... MulticlassRecall(num_classes=3, average='macro'))
>>> metrics(preds, target) # doctest: +NORMALIZE_WHITESPACE
{'MulticlassAccuracy': tensor(0.1250),
'MulticlassPrecision': tensor(0.0667),
'MulticlassRecall': tensor(0.1111)}
Example::
If multiple of the same metric class (with different parameters) should be chained together, metrics can be
passed in as a dict and the output dict will have the same keys as the input dict:
>>> metrics = MetricCollection({'micro_recall': MulticlassRecall(num_classes=3, average='micro'),
... 'macro_recall': MulticlassRecall(num_classes=3, average='macro')})
>>> same_metric = metrics.clone()
>>> pprint(metrics(preds, target))
{'macro_recall': tensor(0.1111), 'micro_recall': tensor(0.1250)}
>>> pprint(same_metric(preds, target))
{'macro_recall': tensor(0.1111), 'micro_recall': tensor(0.1250)}
Example::
Metric collections can also be nested up to a single time. The output of the collection will still be a single
dict with the prefix and postfix arguments from the nested collection:
>>> metrics = MetricCollection([
... MetricCollection([
... MulticlassAccuracy(num_classes=3, average='macro'),
... MulticlassPrecision(num_classes=3, average='macro')
... ], postfix='_macro'),
... MetricCollection([
... MulticlassAccuracy(num_classes=3, average='micro'),
... MulticlassPrecision(num_classes=3, average='micro')
... ], postfix='_micro'),
... ], prefix='valmetrics/')
>>> pprint(metrics(preds, target)) # doctest: +NORMALIZE_WHITESPACE
{'valmetrics/MulticlassAccuracy_macro': tensor(0.1111),
'valmetrics/MulticlassAccuracy_micro': tensor(0.1250),
'valmetrics/MulticlassPrecision_macro': tensor(0.0667),
'valmetrics/MulticlassPrecision_micro': tensor(0.1250)}
Example::
The `compute_groups` argument allow you to specify which metrics should share metric state. By default, this
will automatically be derived but can also be set manually.
>>> metrics = MetricCollection(
... MulticlassRecall(num_classes=3, average='macro'),
... MulticlassPrecision(num_classes=3, average='macro'),
... MeanSquaredError(),
... compute_groups=[['MulticlassRecall', 'MulticlassPrecision'], ['MeanSquaredError']]
... )
>>> metrics.update(preds, target)
>>> pprint(metrics.compute())
{'MeanSquaredError': tensor(2.3750), 'MulticlassPrecision': tensor(0.0667), 'MulticlassRecall': tensor(0.1111)}
>>> pprint(metrics.compute_groups)
{0: ['MulticlassRecall', 'MulticlassPrecision'], 1: ['MeanSquaredError']}
"""
_modules: Dict[str, Metric] # type: ignore[assignment]
_groups: Dict[int, List[str]]
def __init__(
self,
metrics: Union[Metric, Sequence[Metric], Dict[str, Metric]],
*additional_metrics: Metric,
prefix: Optional[str] = None,
postfix: Optional[str] = None,
compute_groups: Union[bool, List[List[str]]] = True,
) -> None:
super().__init__()
self.prefix = self._check_arg(prefix, "prefix")
self.postfix = self._check_arg(postfix, "postfix")
print(f"Metrics compute_groups: {compute_groups}")
self._enable_compute_groups = compute_groups
self._groups_checked: bool = False
self._state_is_copy: bool = False
self.add_metrics(metrics, *additional_metrics)
@property
def metric_state(self) -> Dict[str, Dict[str, Any]]:
"""Get the current state of the metric."""
return {k: m.metric_state for k, m in self.items(keep_base=False, copy_state=False)}
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
"""Call forward for each metric sequentially.
Positional arguments (args) will be passed to every metric in the collection, while keyword arguments (kwargs)
will be filtered based on the signature of the individual metric.
"""
return self._compute_and_reduce("forward", *args, **kwargs)
def update(self, *args: Any, **kwargs: Any) -> None:
"""Call update for each metric sequentially.
Positional arguments (args) will be passed to every metric in the collection, while keyword arguments (kwargs)
will be filtered based on the signature of the individual metric.
"""
# Use compute groups if already initialized and checked
if self._groups_checked:
# Delete the cache of all metrics to invalidate the cache and therefore recent compute calls, forcing new
# compute calls to recompute
for k in self.keys(keep_base=True):
mi = getattr(self, str(k))
mi._computed = None
for cg in self._groups.values():
# only update the first member
m0 = getattr(self, cg[0])
m0.update(*args, **m0._filter_kwargs(**kwargs))
if self._state_is_copy:
# If we have deep copied state in between updates, reestablish link
self._compute_groups_create_state_ref()
self._state_is_copy = False
else: # the first update always do per metric to form compute groups
for m in self.values(copy_state=False):
m_kwargs = m._filter_kwargs(**kwargs)
m.update(*args, **m_kwargs)
if self._enable_compute_groups:
self._merge_compute_groups()
# create reference between states
self._compute_groups_create_state_ref()
self._groups_checked = True
def _merge_compute_groups(self) -> None:
"""Iterate over the collection of metrics, checking if the state of each metric matches another.
If so, their compute groups will be merged into one. The complexity of the method is approximately
``O(number_of_metrics_in_collection ** 2)``, as all metrics need to be compared to all other metrics.
"""
num_groups = len(self._groups)
while True:
for cg_idx1, cg_members1 in deepcopy(self._groups).items():
for cg_idx2, cg_members2 in deepcopy(self._groups).items():
if cg_idx1 == cg_idx2:
continue
metric1 = getattr(self, cg_members1[0])
metric2 = getattr(self, cg_members2[0])
if self._equal_metric_states(metric1, metric2):
self._groups[cg_idx1].extend(self._groups.pop(cg_idx2))
break
# Start over if we merged groups
if len(self._groups) != num_groups:
break
# Stop when we iterate over everything and do not merge any groups
if len(self._groups) == num_groups:
break
num_groups = len(self._groups)
# Re-index groups
temp = deepcopy(self._groups)
self._groups = {}
for idx, values in enumerate(temp.values()):
self._groups[idx] = values
@staticmethod
def _equal_metric_states(metric1: Metric, metric2: Metric) -> bool:
"""Check if the metric state of two metrics are the same."""
# empty state
if len(metric1._defaults) == 0 or len(metric2._defaults) == 0:
return False
if metric1._defaults.keys() != metric2._defaults.keys():
return False
for key in metric1._defaults:
state1 = getattr(metric1, key)
state2 = getattr(metric2, key)
if type(state1) != type(state2):
return False
if isinstance(state1, Tensor) and isinstance(state2, Tensor):
return state1.shape == state2.shape and allclose(state1, state2)
if isinstance(state1, list) and isinstance(state2, list):
return all(s1.shape == s2.shape and allclose(s1, s2) for s1, s2 in zip(state1, state2))
return True
def _compute_groups_create_state_ref(self, copy: bool = False) -> None:
"""Create reference between metrics in the same compute group.
Args:
copy: If `True` the metric state will between members will be copied instead
of just passed by reference
"""
if not self._state_is_copy:
for cg in self._groups.values():
m0 = getattr(self, cg[0])
for i in range(1, len(cg)):
mi = getattr(self, cg[i])
for state in m0._defaults:
m0_state = getattr(m0, state)
# Determine if we just should set a reference or a full copy
setattr(mi, state, deepcopy(m0_state) if copy else m0_state)
mi._update_count = deepcopy(m0._update_count) if copy else m0._update_count
self._state_is_copy = copy
def compute(self) -> Dict[str, Any]:
"""Compute the result for each metric in the collection."""
return self._compute_and_reduce("compute")
def _compute_and_reduce(
self, method_name: Literal["compute", "forward"], *args: Any, **kwargs: Any
) -> Dict[str, Any]:
"""Compute result from collection and reduce into a single dictionary.
Args:
method_name: The method to call on each metric in the collection.
Should be either `compute` or `forward`.
args: Positional arguments to pass to each metric (if method_name is `forward`)
kwargs: Keyword arguments to pass to each metric (if method_name is `forward`)
Raises:
ValueError:
If method_name is not `compute` or `forward`.
"""
result = {}
for k, m in self.items(keep_base=True, copy_state=False):
if method_name == "compute":
res = m.compute()
elif method_name == "forward":
res = m(*args, **m._filter_kwargs(**kwargs))
else:
raise ValueError(f"method_name should be either 'compute' or 'forward', but got {method_name}")
result[k] = res
_, duplicates = _flatten_dict(result)
flattened_results = {}
for k, m in self.items(keep_base=True, copy_state=False):
res = result[k]
if isinstance(res, dict):
for key, v in res.items():
# if duplicates of keys we need to add unique prefix to each key
if duplicates:
stripped_k = k.replace(getattr(m, "prefix", ""), "")
stripped_k = stripped_k.replace(getattr(m, "postfix", ""), "")
key = f"{stripped_k}_{key}"
if getattr(m, "_from_collection", None) and m.prefix is not None:
key = f"{m.prefix}{key}"
if getattr(m, "_from_collection", None) and m.postfix is not None:
key = f"{key}{m.postfix}"
flattened_results[key] = v
else:
flattened_results[k] = res
return {self._set_name(k): v for k, v in flattened_results.items()}
def reset(self) -> None:
"""Call reset for each metric sequentially."""
for m in self.values(copy_state=False):
m.reset()
if self._enable_compute_groups and self._groups_checked:
# reset state reference
self._compute_groups_create_state_ref()
def clone(self, prefix: Optional[str] = None, postfix: Optional[str] = None) -> "MetricCollection":
"""Make a copy of the metric collection.
Args:
prefix: a string to append in front of the metric keys
postfix: a string to append after the keys of the output dict.
"""
mc = deepcopy(self)
if prefix:
mc.prefix = self._check_arg(prefix, "prefix")
if postfix:
mc.postfix = self._check_arg(postfix, "postfix")
return mc
def persistent(self, mode: bool = True) -> None:
"""Change if metric states should be saved to its state_dict after initialization."""
for m in self.values(copy_state=False):
m.persistent(mode)
def add_metrics(
self, metrics: Union[Metric, Sequence[Metric], Dict[str, Metric]], *additional_metrics: Metric
) -> None:
"""Add new metrics to Metric Collection."""
if isinstance(metrics, Metric):
# set compatible with original type expectations
metrics = [metrics]
if isinstance(metrics, Sequence):
# prepare for optional additions
metrics = list(metrics)
remain: list = []
for m in additional_metrics:
sel = metrics if isinstance(m, Metric) else remain
sel.append(m)
if remain:
rank_zero_warn(
f"You have passes extra arguments {remain} which are not `Metric` so they will be ignored."
)
elif additional_metrics:
raise ValueError(
f"You have passes extra arguments {additional_metrics} which are not compatible"
f" with first passed dictionary {metrics} so they will be ignored."
)
if isinstance(metrics, dict):
# Check all values are metrics
# Make sure that metrics are added in deterministic order
for name in sorted(metrics.keys()):
metric = metrics[name]
if not isinstance(metric, (Metric, MetricCollection)):
raise ValueError(
f"Value {metric} belonging to key {name} is not an instance of"
" `torchmetrics.Metric` or `torchmetrics.MetricCollection`"
)
if isinstance(metric, Metric):
self[name] = metric
else:
for k, v in metric.items(keep_base=False):
v.postfix = metric.postfix
v.prefix = metric.prefix
v._from_collection = True
self[f"{name}_{k}"] = v
elif isinstance(metrics, Sequence):
for metric in metrics:
if not isinstance(metric, (Metric, MetricCollection)):
raise ValueError(
f"Input {metric} to `MetricCollection` is not a instance of"
" `torchmetrics.Metric` or `torchmetrics.MetricCollection`"
)
if isinstance(metric, Metric):
name = metric.__class__.__name__
if name in self:
raise ValueError(f"Encountered two metrics both named {name}")
self[name] = metric
else:
for k, v in metric.items(keep_base=False):
v.postfix = metric.postfix
v.prefix = metric.prefix
v._from_collection = True
self[k] = v
else:
raise ValueError(
"Unknown input to MetricCollection. Expected, `Metric`, `MetricCollection` or `dict`/`sequence` of the"
f" previous, but got {metrics}"
)
self._groups_checked = False
if self._enable_compute_groups:
self._init_compute_groups()
else:
self._groups = {}
def _init_compute_groups(self) -> None:
"""Initialize compute groups.
If user provided a list, we check that all metrics in the list are also in the collection. If set to `True` we
simply initialize each metric in the collection as its own group
"""
if isinstance(self._enable_compute_groups, list):
self._groups = dict(enumerate(self._enable_compute_groups))
for v in self._groups.values():
for metric in v:
if metric not in self:
raise ValueError(
f"Input {metric} in `compute_groups` argument does not match a metric in the collection."
f" Please make sure that {self._enable_compute_groups} matches {self.keys(keep_base=True)}"
)
self._groups_checked = True
else:
# Initialize all metrics as their own compute group
self._groups = {i: [str(k)] for i, k in enumerate(self.keys(keep_base=True))}
@property
def compute_groups(self) -> Dict[int, List[str]]:
"""Return a dict with the current compute groups in the collection."""
return self._groups
def _set_name(self, base: str) -> str:
"""Adjust name of metric with both prefix and postfix."""
name = base if self.prefix is None else self.prefix + base
return name if self.postfix is None else name + self.postfix
def _to_renamed_ordered_dict(self) -> OrderedDict:
od = OrderedDict()
for k, v in self._modules.items():
od[self._set_name(k)] = v
return od
def __iter__(self) -> Iterator[Hashable]:
"""Return an iterator over the keys of the MetricDict."""
return iter(self.keys())
# TODO: redefine this as native python dict
def keys(self, keep_base: bool = False) -> Iterable[Hashable]:
r"""Return an iterable of the ModuleDict key.
Args:
keep_base: Whether to add prefix/postfix on the items collection.
"""
if keep_base:
return self._modules.keys()
return self._to_renamed_ordered_dict().keys()
def items(self, keep_base: bool = False, copy_state: bool = True) -> Iterable[Tuple[str, Metric]]:
r"""Return an iterable of the ModuleDict key/value pairs.
Args:
keep_base: Whether to add prefix/postfix on the collection.
copy_state:
If metric states should be copied between metrics in the same compute group or just passed by reference
"""
self._compute_groups_create_state_ref(copy_state)
if keep_base:
return self._modules.items()
return self._to_renamed_ordered_dict().items()
def values(self, copy_state: bool = True) -> Iterable[Metric]:
"""Return an iterable of the ModuleDict values.
Args:
copy_state:
If metric states should be copied between metrics in the same compute group or just passed by reference
"""
self._compute_groups_create_state_ref(copy_state)
return self._modules.values()
def __getitem__(self, key: str, copy_state: bool = True) -> Metric:
"""Retrieve a single metric from the collection.
Args:
key: name of metric to retrieve
copy_state:
If metric states should be copied between metrics in the same compute group or just passed by reference
"""
self._compute_groups_create_state_ref(copy_state)
if self.prefix:
key = key.removeprefix(self.prefix)
if self.postfix:
key = key.removesuffix(self.postfix)
return self._modules[key]
@staticmethod
def _check_arg(arg: Optional[str], name: str) -> Optional[str]:
if arg is None or isinstance(arg, str):
return arg
raise ValueError(f"Expected input `{name}` to be a string, but got {type(arg)}")
def __repr__(self) -> str:
"""Return the representation of the metric collection including all metrics in the collection."""
repr_str = super().__repr__()[:-2]
if self.prefix:
repr_str += f",\n prefix={self.prefix}{',' if self.postfix else ''}"
if self.postfix:
repr_str += f"{',' if not self.prefix else ''}\n postfix={self.postfix}"
return repr_str + "\n)"
def set_dtype(self, dst_type: Union[str, torch.dtype]) -> "MetricCollection":
"""Transfer all metric state to specific dtype. Special version of standard `type` method.
Arguments:
dst_type: the desired type as ``torch.dtype`` or string.
"""
for m in self.values(copy_state=False):
m.set_dtype(dst_type)
return self
def plot(
self,
val: Optional[Union[Dict, Sequence[Dict]]] = None,
ax: Optional[Union[_AX_TYPE, Sequence[_AX_TYPE]]] = None,
together: bool = False,
) -> Sequence[_PLOT_OUT_TYPE]:
"""Plot a single or multiple values from the metric.
The plot method has two modes of operation. If argument `together` is set to `False` (default), the `.plot`
method of each metric will be called individually and the result will be list of figures. If `together` is set
to `True`, the values of all metrics will instead be plotted in the same figure.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: Either a single instance of matplotlib axis object or an sequence of matplotlib axis objects. If
provided, will add the plots to the provided axis objects. If not provided, will create a new. If
argument `together` is set to `True`, a single object is expected. If `together` is set to `False`,
the number of axis objects needs to be the same length as the number of metrics in the collection.
together: If `True`, will plot all metrics in the same axis. If `False`, will plot each metric in a separate
Returns:
Either install tuple of Figure and Axes object or an sequence of tuples with Figure and Axes object for each
metric in the collection.
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
ValueError:
If `together` is not an bool
ValueError:
If `ax` is not an instance of matplotlib axis object or a sequence of matplotlib axis objects
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics import MetricCollection
>>> from torchmetrics.classification import BinaryAccuracy, BinaryPrecision, BinaryRecall
>>> metrics = MetricCollection([BinaryAccuracy(), BinaryPrecision(), BinaryRecall()])
>>> metrics.update(torch.rand(10), torch.randint(2, (10,)))
>>> fig_ax_ = metrics.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics import MetricCollection
>>> from torchmetrics.classification import BinaryAccuracy, BinaryPrecision, BinaryRecall
>>> metrics = MetricCollection([BinaryAccuracy(), BinaryPrecision(), BinaryRecall()])
>>> values = []
>>> for _ in range(10):
... values.append(metrics(torch.rand(10), torch.randint(2, (10,))))
>>> fig_, ax_ = metrics.plot(values, together=True)
"""
if not isinstance(together, bool):
raise ValueError(f"Expected argument `together` to be a boolean, but got {type(together)}")
if ax is not None:
if together and not isinstance(ax, _AX_TYPE):
raise ValueError(
f"Expected argument `ax` to be a matplotlib axis object, but got {type(ax)} when `together=True`"
)
if not together and not (
isinstance(ax, Sequence) and all(isinstance(a, _AX_TYPE) for a in ax) and len(ax) == len(self)
):
raise ValueError(
f"Expected argument `ax` to be a sequence of matplotlib axis objects with the same length as the "
f"number of metrics in the collection, but got {type(ax)} with len {len(ax)} when `together=False`"
)
val = val or self.compute()
if together:
return plot_single_or_multi_val(val, ax=ax)
fig_axs = []
for i, (k, m) in enumerate(self.items(keep_base=False, copy_state=False)):
if isinstance(val, dict):
f, a = m.plot(val[k], ax=ax[i] if ax is not None else ax)
elif isinstance(val, Sequence):
f, a = m.plot([v[k] for v in val], ax=ax[i] if ax is not None else ax)
fig_axs.append((f, a))
return fig_axs
|