| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn as nn | 
					
					
						
						| 
							 | 
						import functools | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import cv2 | 
					
					
						
						| 
							 | 
						from einops import rearrange | 
					
					
						
						| 
							 | 
						from annotator.util import annotator_ckpts_path | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class UnetGenerator(nn.Module): | 
					
					
						
						| 
							 | 
						    """Create a Unet-based generator""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): | 
					
					
						
						| 
							 | 
						        """Construct a Unet generator | 
					
					
						
						| 
							 | 
						        Parameters: | 
					
					
						
						| 
							 | 
						            input_nc (int)  -- the number of channels in input images | 
					
					
						
						| 
							 | 
						            output_nc (int) -- the number of channels in output images | 
					
					
						
						| 
							 | 
						            num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, | 
					
					
						
						| 
							 | 
						                                image of size 128x128 will become of size 1x1 # at the bottleneck | 
					
					
						
						| 
							 | 
						            ngf (int)       -- the number of filters in the last conv layer | 
					
					
						
						| 
							 | 
						            norm_layer      -- normalization layer | 
					
					
						
						| 
							 | 
						        We construct the U-Net from the innermost layer to the outermost layer. | 
					
					
						
						| 
							 | 
						        It is a recursive process. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super(UnetGenerator, self).__init__() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)   | 
					
					
						
						| 
							 | 
						        for _ in range(num_downs - 5):           | 
					
					
						
						| 
							 | 
						            unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | 
					
					
						
						| 
							 | 
						        unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | 
					
					
						
						| 
							 | 
						        unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | 
					
					
						
						| 
							 | 
						        self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, input): | 
					
					
						
						| 
							 | 
						        """Standard forward""" | 
					
					
						
						| 
							 | 
						        return self.model(input) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class UnetSkipConnectionBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    """Defines the Unet submodule with skip connection. | 
					
					
						
						| 
							 | 
						        X -------------------identity---------------------- | 
					
					
						
						| 
							 | 
						        |-- downsampling -- |submodule| -- upsampling --| | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, outer_nc, inner_nc, input_nc=None, | 
					
					
						
						| 
							 | 
						                 submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): | 
					
					
						
						| 
							 | 
						        """Construct a Unet submodule with skip connections. | 
					
					
						
						| 
							 | 
						        Parameters: | 
					
					
						
						| 
							 | 
						            outer_nc (int) -- the number of filters in the outer conv layer | 
					
					
						
						| 
							 | 
						            inner_nc (int) -- the number of filters in the inner conv layer | 
					
					
						
						| 
							 | 
						            input_nc (int) -- the number of channels in input images/features | 
					
					
						
						| 
							 | 
						            submodule (UnetSkipConnectionBlock) -- previously defined submodules | 
					
					
						
						| 
							 | 
						            outermost (bool)    -- if this module is the outermost module | 
					
					
						
						| 
							 | 
						            innermost (bool)    -- if this module is the innermost module | 
					
					
						
						| 
							 | 
						            norm_layer          -- normalization layer | 
					
					
						
						| 
							 | 
						            use_dropout (bool)  -- if use dropout layers. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super(UnetSkipConnectionBlock, self).__init__() | 
					
					
						
						| 
							 | 
						        self.outermost = outermost | 
					
					
						
						| 
							 | 
						        if type(norm_layer) == functools.partial: | 
					
					
						
						| 
							 | 
						            use_bias = norm_layer.func == nn.InstanceNorm2d | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            use_bias = norm_layer == nn.InstanceNorm2d | 
					
					
						
						| 
							 | 
						        if input_nc is None: | 
					
					
						
						| 
							 | 
						            input_nc = outer_nc | 
					
					
						
						| 
							 | 
						        downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, | 
					
					
						
						| 
							 | 
						                             stride=2, padding=1, bias=use_bias) | 
					
					
						
						| 
							 | 
						        downrelu = nn.LeakyReLU(0.2, True) | 
					
					
						
						| 
							 | 
						        downnorm = norm_layer(inner_nc) | 
					
					
						
						| 
							 | 
						        uprelu = nn.ReLU(True) | 
					
					
						
						| 
							 | 
						        upnorm = norm_layer(outer_nc) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if outermost: | 
					
					
						
						| 
							 | 
						            upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, | 
					
					
						
						| 
							 | 
						                                        kernel_size=4, stride=2, | 
					
					
						
						| 
							 | 
						                                        padding=1) | 
					
					
						
						| 
							 | 
						            down = [downconv] | 
					
					
						
						| 
							 | 
						            up = [uprelu, upconv, nn.Tanh()] | 
					
					
						
						| 
							 | 
						            model = down + [submodule] + up | 
					
					
						
						| 
							 | 
						        elif innermost: | 
					
					
						
						| 
							 | 
						            upconv = nn.ConvTranspose2d(inner_nc, outer_nc, | 
					
					
						
						| 
							 | 
						                                        kernel_size=4, stride=2, | 
					
					
						
						| 
							 | 
						                                        padding=1, bias=use_bias) | 
					
					
						
						| 
							 | 
						            down = [downrelu, downconv] | 
					
					
						
						| 
							 | 
						            up = [uprelu, upconv, upnorm] | 
					
					
						
						| 
							 | 
						            model = down + up | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, | 
					
					
						
						| 
							 | 
						                                        kernel_size=4, stride=2, | 
					
					
						
						| 
							 | 
						                                        padding=1, bias=use_bias) | 
					
					
						
						| 
							 | 
						            down = [downrelu, downconv, downnorm] | 
					
					
						
						| 
							 | 
						            up = [uprelu, upconv, upnorm] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if use_dropout: | 
					
					
						
						| 
							 | 
						                model = down + [submodule] + up + [nn.Dropout(0.5)] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                model = down + [submodule] + up | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.model = nn.Sequential(*model) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        if self.outermost: | 
					
					
						
						| 
							 | 
						            return self.model(x) | 
					
					
						
						| 
							 | 
						        else:    | 
					
					
						
						| 
							 | 
						            return torch.cat([x, self.model(x)], 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class LineartAnimeDetector: | 
					
					
						
						| 
							 | 
						    def __init__(self): | 
					
					
						
						| 
							 | 
						        remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/netG.pth" | 
					
					
						
						| 
							 | 
						        modelpath = os.path.join(annotator_ckpts_path, "netG.pth") | 
					
					
						
						| 
							 | 
						        if not os.path.exists(modelpath): | 
					
					
						
						| 
							 | 
						            from basicsr.utils.download_util import load_file_from_url | 
					
					
						
						| 
							 | 
						            load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) | 
					
					
						
						| 
							 | 
						        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) | 
					
					
						
						| 
							 | 
						        net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ckpt = torch.load(modelpath, map_location=torch.device('cpu')) | 
					
					
						
						| 
							 | 
						        for key in list(ckpt.keys()): | 
					
					
						
						| 
							 | 
						            if 'module.' in key: | 
					
					
						
						| 
							 | 
						                ckpt[key.replace('module.', '')] = ckpt[key] | 
					
					
						
						| 
							 | 
						                del ckpt[key] | 
					
					
						
						| 
							 | 
						        net.load_state_dict(ckpt) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        net = net.cpu() | 
					
					
						
						| 
							 | 
						        net.eval() | 
					
					
						
						| 
							 | 
						        self.model = net | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__(self, input_image): | 
					
					
						
						| 
							 | 
						        H, W, C = input_image.shape | 
					
					
						
						| 
							 | 
						        Hn = 256 * int(np.ceil(float(H) / 256.0)) | 
					
					
						
						| 
							 | 
						        Wn = 256 * int(np.ceil(float(W) / 256.0)) | 
					
					
						
						| 
							 | 
						        img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC) | 
					
					
						
						| 
							 | 
						        with torch.no_grad(): | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            image_feed = torch.from_numpy(img).float().cpu() | 
					
					
						
						| 
							 | 
						            image_feed = image_feed / 127.5 - 1.0 | 
					
					
						
						| 
							 | 
						            image_feed = rearrange(image_feed, 'h w c -> 1 c h w') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            line = self.model(image_feed)[0, 0] * 127.5 + 127.5 | 
					
					
						
						| 
							 | 
						            line = line.cpu().numpy() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC) | 
					
					
						
						| 
							 | 
						            line = line.clip(0, 255).astype(np.uint8) | 
					
					
						
						| 
							 | 
						            return line | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 |