File size: 989 Bytes
b9b4796
 
f13a3ca
65e80e3
 
f13a3ca
 
 
 
 
 
 
9e57aa8
 
 
 
80e0122
9e57aa8
80e0122
 
9e57aa8
80e0122
9e57aa8
 
 
 
 
 
 
 
80e0122
9e57aa8
f13a3ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
os.system('pip install transformers')
# Import the necessary libraries
import os
os.system('pip install torch')
from transformers import AutoModel, AutoTokenizer
import torch
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
import pandas as pd
import gradio as gr

# Load the pre-trained model and tokenizer
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)

# Example Gradio function
def search_by_name(name):
    # Your logic to search by name and return a response
    pass

# Gradio interface
iface = gr.Interface(
    fn=search_by_name,
    inputs=gr.Textbox(label="Please write your Name"),
    outputs=gr.Textbox(label="Your PEC number"),
    title="PEC Number Lookup",
    description="Enter your name to find your PEC number."
)

# Launch the interface
iface.launch()