Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -61,8 +61,8 @@ def train_model(df):
|
|
| 61 |
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
| 62 |
|
| 63 |
# Load your pre-trained model and tokenizer from Hugging Face
|
| 64 |
-
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 65 |
-
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 66 |
|
| 67 |
# Add your training code here
|
| 68 |
# This may involve tokenizing the data and feeding it into the model
|
|
@@ -71,8 +71,8 @@ def train_model(df):
|
|
| 71 |
# Define the Gradio interface function
|
| 72 |
def predict(input_text):
|
| 73 |
# Load the model and tokenizer
|
| 74 |
-
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 75 |
-
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base")
|
| 76 |
|
| 77 |
# Tokenize input and make predictions
|
| 78 |
inputs = tokenizer(input_text, return_tensors="pt")
|
|
@@ -108,6 +108,3 @@ if __name__ == "__main__":
|
|
| 108 |
else:
|
| 109 |
print("Failed to build the Gradio interface. Please check the dataset and model.")
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
| 61 |
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
| 62 |
|
| 63 |
# Load your pre-trained model and tokenizer from Hugging Face
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 65 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 66 |
|
| 67 |
# Add your training code here
|
| 68 |
# This may involve tokenizing the data and feeding it into the model
|
|
|
|
| 71 |
# Define the Gradio interface function
|
| 72 |
def predict(input_text):
|
| 73 |
# Load the model and tokenizer
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 75 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 76 |
|
| 77 |
# Tokenize input and make predictions
|
| 78 |
inputs = tokenizer(input_text, return_tensors="pt")
|
|
|
|
| 108 |
else:
|
| 109 |
print("Failed to build the Gradio interface. Please check the dataset and model.")
|
| 110 |
|
|
|
|
|
|
|
|
|