Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,100 +1,55 @@
|
|
| 1 |
import os
|
| 2 |
-
import subprocess
|
| 3 |
-
|
| 4 |
-
# Function to install a package if it is not already installed
|
| 5 |
-
def install(package):
|
| 6 |
-
subprocess.check_call([os.sys.executable, "-m", "pip", "install", package])
|
| 7 |
-
|
| 8 |
-
# Ensure the necessary packages are installed
|
| 9 |
-
install("transformers")
|
| 10 |
-
install("torch")
|
| 11 |
-
install("pandas")
|
| 12 |
-
install("scikit-learn")
|
| 13 |
-
install("gradio")
|
| 14 |
-
import os
|
| 15 |
import pandas as pd
|
| 16 |
import gradio as gr
|
| 17 |
from transformers import AutoModel, AutoTokenizer
|
| 18 |
import torch
|
| 19 |
-
from sklearn.model_selection import train_test_split
|
| 20 |
-
|
| 21 |
-
# Function to convert a list to a DataFrame
|
| 22 |
-
def list_to_dataframe(data_list):
|
| 23 |
-
df = pd.DataFrame(data_list)
|
| 24 |
-
return df
|
| 25 |
-
|
| 26 |
-
# Load your dataset from a file
|
| 27 |
-
def load_dataset(file_path=None):
|
| 28 |
-
if file_path is None:
|
| 29 |
-
file_path = '/content/Valid-part-2.xlsx' # Default path if the file is uploaded manually to Colab
|
| 30 |
-
|
| 31 |
-
# Check if the file exists
|
| 32 |
-
if file_path and not os.path.exists(file_path):
|
| 33 |
-
print(f"File not found at '{file_path}', using default list data...")
|
| 34 |
-
# Fallback to a default list if file is not found
|
| 35 |
-
default_data = [
|
| 36 |
-
{'text': 'Example sentence 1', 'label': 'label1'},
|
| 37 |
-
{'text': 'Example sentence 2', 'label': 'label2'},
|
| 38 |
-
]
|
| 39 |
-
return list_to_dataframe(default_data)
|
| 40 |
-
|
| 41 |
-
try:
|
| 42 |
-
df = pd.read_excel(file_path)
|
| 43 |
-
print("Columns in the dataset:", df.columns.tolist())
|
| 44 |
-
return df
|
| 45 |
-
except Exception as e:
|
| 46 |
-
print(f"Error loading dataset: {e}")
|
| 47 |
-
return None
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
def
|
| 51 |
-
|
| 52 |
return df
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# Load your pre-trained model and tokenizer from Hugging Face
|
| 59 |
-
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 60 |
-
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
def
|
| 67 |
-
|
| 68 |
-
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 69 |
-
|
| 70 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
| 71 |
with torch.no_grad():
|
| 72 |
outputs = model(**inputs)
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
def
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
return iface
|
| 91 |
|
| 92 |
# Run the Gradio interface
|
| 93 |
if __name__ == "__main__":
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
if iface:
|
| 97 |
-
iface.launch()
|
| 98 |
-
else:
|
| 99 |
-
print("Failed to build the Gradio interface. Please check the dataset and model.")
|
| 100 |
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoModel, AutoTokenizer
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Load the dataset containing PEC numbers and names
|
| 8 |
+
def load_dataset(file_path='PEC_Numbers_and_Names.xlsx'):
|
| 9 |
+
df = pd.read_excel(file_path)
|
| 10 |
return df
|
| 11 |
|
| 12 |
+
# Load the model and tokenizer from Hugging Face
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 14 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Define the function to get the name based on the PEC number
|
| 17 |
+
def get_name(pec_number, df):
|
| 18 |
+
result = df[df['PEC No.'] == pec_number]
|
| 19 |
+
if not result.empty:
|
| 20 |
+
return result.iloc[0]['Name']
|
| 21 |
+
else:
|
| 22 |
+
return "PEC Number not found."
|
| 23 |
|
| 24 |
+
# Function to process the PEC number using the Hugging Face model
|
| 25 |
+
def process_with_model(pec_number):
|
| 26 |
+
inputs = tokenizer(pec_number, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
| 27 |
with torch.no_grad():
|
| 28 |
outputs = model(**inputs)
|
| 29 |
+
# Here, we simply return the last hidden state as a string representation
|
| 30 |
+
# In a real application, you might want to use this in a more meaningful way
|
| 31 |
+
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
|
| 32 |
|
| 33 |
+
# Combine both functions to create a prediction
|
| 34 |
+
def predict(pec_number):
|
| 35 |
+
name = get_name(pec_number, df)
|
| 36 |
+
model_output = process_with_model(pec_number)
|
| 37 |
+
return f"Name: {name}\nModel Output: {model_output}"
|
| 38 |
+
|
| 39 |
+
# Load the dataset
|
| 40 |
+
df = load_dataset()
|
| 41 |
|
| 42 |
+
# Build the Gradio interface
|
| 43 |
+
iface = gr.Interface(
|
| 44 |
+
fn=predict,
|
| 45 |
+
inputs=gr.Textbox(lines=1, placeholder="Enter PEC Number..."),
|
| 46 |
+
outputs="text",
|
| 47 |
+
title="PEC Number Lookup with Model Integration",
|
| 48 |
+
description="Enter a PEC number to retrieve the corresponding name and process it with a Hugging Face model."
|
| 49 |
+
)
|
|
|
|
| 50 |
|
| 51 |
# Run the Gradio interface
|
| 52 |
if __name__ == "__main__":
|
| 53 |
+
iface.launch()
|
| 54 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|