Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,8 +21,8 @@ tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", t
|
|
| 21 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 22 |
|
| 23 |
# Load the dataset containing PEC numbers and names
|
| 24 |
-
def load_dataset(file_path=
|
| 25 |
-
if
|
| 26 |
df = pd.read_excel(file_path)
|
| 27 |
else:
|
| 28 |
raise FileNotFoundError(f"File not found: {file_path}")
|
|
@@ -31,7 +31,7 @@ def load_dataset(file_path=None):
|
|
| 31 |
# Function to get the name based on the PEC number
|
| 32 |
def get_name(pec_number, df):
|
| 33 |
df['PEC No.'] = df['PEC No.'].str.strip().str.upper()
|
| 34 |
-
pec_number = pec_number.strip().upper()
|
| 35 |
|
| 36 |
result = df[df['PEC No.'] == pec_number]
|
| 37 |
|
|
@@ -48,13 +48,10 @@ def process_with_model(pec_number):
|
|
| 48 |
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
|
| 49 |
|
| 50 |
# Combine both functions to create a prediction
|
| 51 |
-
def predict(pec_number
|
| 52 |
try:
|
| 53 |
-
# Load the dataset from the
|
| 54 |
-
|
| 55 |
-
df = pd.read_excel(file.name)
|
| 56 |
-
else:
|
| 57 |
-
return "Please upload the PEC Numbers and Names file."
|
| 58 |
|
| 59 |
name = get_name(pec_number, df)
|
| 60 |
model_output = process_with_model(pec_number)
|
|
@@ -62,16 +59,13 @@ def predict(pec_number, file):
|
|
| 62 |
except FileNotFoundError as e:
|
| 63 |
return str(e)
|
| 64 |
|
| 65 |
-
# Build the Gradio interface
|
| 66 |
iface = gr.Interface(
|
| 67 |
fn=predict,
|
| 68 |
-
inputs=
|
| 69 |
-
gr.Textbox(lines=1, placeholder="Enter PEC Number..."),
|
| 70 |
-
gr.File(label="Upload PEC Numbers and Names file")
|
| 71 |
-
],
|
| 72 |
outputs="text",
|
| 73 |
title="PEC Number to Name Lookup",
|
| 74 |
-
description="Enter a PEC number to retrieve the corresponding name and process it with a Hugging Face model.
|
| 75 |
)
|
| 76 |
|
| 77 |
# Run the Gradio interface
|
|
|
|
| 21 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
| 22 |
|
| 23 |
# Load the dataset containing PEC numbers and names
|
| 24 |
+
def load_dataset(file_path='PEC_Numbers_and_Names.xlsx'):
|
| 25 |
+
if os.path.exists(file_path):
|
| 26 |
df = pd.read_excel(file_path)
|
| 27 |
else:
|
| 28 |
raise FileNotFoundError(f"File not found: {file_path}")
|
|
|
|
| 31 |
# Function to get the name based on the PEC number
|
| 32 |
def get_name(pec_number, df):
|
| 33 |
df['PEC No.'] = df['PEC No.'].str.strip().str.upper()
|
| 34 |
+
pec_number = pec_number.strip().str.upper()
|
| 35 |
|
| 36 |
result = df[df['PEC No.'] == pec_number]
|
| 37 |
|
|
|
|
| 48 |
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
|
| 49 |
|
| 50 |
# Combine both functions to create a prediction
|
| 51 |
+
def predict(pec_number):
|
| 52 |
try:
|
| 53 |
+
# Load the dataset from the root directory
|
| 54 |
+
df = load_dataset()
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
name = get_name(pec_number, df)
|
| 57 |
model_output = process_with_model(pec_number)
|
|
|
|
| 59 |
except FileNotFoundError as e:
|
| 60 |
return str(e)
|
| 61 |
|
| 62 |
+
# Build the Gradio interface without the file upload option
|
| 63 |
iface = gr.Interface(
|
| 64 |
fn=predict,
|
| 65 |
+
inputs=gr.Textbox(lines=1, placeholder="Enter PEC Number..."),
|
|
|
|
|
|
|
|
|
|
| 66 |
outputs="text",
|
| 67 |
title="PEC Number to Name Lookup",
|
| 68 |
+
description="Enter a PEC number to retrieve the corresponding name and process it with a Hugging Face model."
|
| 69 |
)
|
| 70 |
|
| 71 |
# Run the Gradio interface
|