Spaces:
Runtime error
Runtime error
File size: 4,631 Bytes
30ef1d4 1557b00 3c739a1 75c3f8c 33f2b2c fa004d4 48e09b8 3c739a1 1557b00 30ef1d4 e6ae8f1 30ef1d4 348a268 30ef1d4 3c73224 7a9fdcc 48e09b8 75c3f8c 48e09b8 4cff703 48e09b8 3c739a1 7a9fdcc 30ef1d4 7a9fdcc 30ef1d4 3c73224 30ef1d4 75c3f8c 30ef1d4 48e09b8 75c3f8c 48e09b8 75c3f8c 30ef1d4 33cf987 48e09b8 33cf987 48e09b8 33cf987 48e09b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import spaces
import torch
from datasets import load_dataset
from huggingface_hub import CommitScheduler
from pathlib import Path
import uuid
import json
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f'[INFO] Using device: {device}')
# token
token = os.environ['TOKEN']
# Load the pretrained model and tokenizer
MODEL_NAME = "atlasia/Al-Atlas-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,token=token) # , token=token
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,token=token).to(device)
# Fix tokenizer padding
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token # Set pad token
# Predefined examples
examples = [
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
, 256, 0.7, 0.9, 150, 8, 1.5],
["المستقبل ديال الذكاء الصناعي فالمغرب"
, 256, 0.7, 0.9, 150, 8, 1.5],
[" المطبخ المغربي"
, 256, 0.7, 0.9, 150, 8, 1.5],
["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم"
, 256, 0.7, 0.9, 150, 8, 1.5],
]
# Define the file where to save the data
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json"
feedback_file = submit_file
# Create directory if it doesn't exist
submit_file.parent.mkdir(exist_ok=True, parents=True)
scheduler = CommitScheduler(
repo_id="atlasia/atlaset_inference_ds",
repo_type="dataset",
folder_path=submit_file.parent,
path_in_repo="data",
every=5,
token=token
)
@spaces.GPU
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
repetition_penalty=repetition_penalty,
num_beams=num_beams,
top_k= top_k,
early_stopping = True,
pad_token_id=tokenizer.pad_token_id, # Explicit pad token
eos_token_id=tokenizer.eos_token_id, # Explicit eos token
)
result=tokenizer.decode(output[0], skip_special_tokens=True)
save_feedback(prompt,result,f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}")
return result
def save_feedback(input, output, params) -> None:
"""
Append input/outputs and parameters to a JSON Lines file using a thread lock
to avoid concurrent writes from different users.
"""
with scheduler.lock:
with feedback_file.open("a") as f:
f.write(json.dumps({"input": input, "output": output, "params": params}))
f.write("\n")
if __name__ == "__main__":
# Create the Gradio interface
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt: دخل النص بالدارجة")
max_length = gr.Slider(8, 4096, value=256, label="Max Length")
temperature = gr.Slider(0.0, 2, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top-p")
top_k = gr.Slider(1, 10000, value=150, label="Top-k")
num_beams = gr.Slider(1, 20, value=8, label="Number of Beams")
repetition_penalty = gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty")
submit_btn = gr.Button("Generate")
with gr.Column():
output_text = gr.Textbox(label="Generated Text in Moroccan Darija")
# Examples section with caching
gr.Examples(
examples=examples,
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
outputs=output_text,
fn=generate_text,
cache_examples=True
)
# Button action
submit_btn.click(
generate_text,
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
outputs=output_text
)
gr.Markdown("""
# Moroccan Darija LLM
Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.
""")
app.launch() |