File size: 3,851 Bytes
30ef1d4
 
1557b00
3c739a1
 
75c3f8c
 
33f2b2c
fa004d4
3c739a1
 
 
 
1557b00
 
 
30ef1d4
 
e6ae8f1
30ef1d4
348a268
 
30ef1d4
3c73224
 
 
 
7a9fdcc
 
 
 
 
 
 
 
 
 
 
 
75c3f8c
 
4cff703
 
 
 
 
 
 
3c739a1
7a9fdcc
30ef1d4
 
 
 
 
 
 
 
7a9fdcc
30ef1d4
 
3c73224
 
30ef1d4
75c3f8c
 
 
 
30ef1d4
75c3f8c
 
8093b01
75c3f8c
 
 
30ef1d4
33cf987
 
 
 
 
 
01090a1
 
 
33cf987
 
 
 
 
 
 
 
 
d56d00d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import spaces
import torch
from datasets import load_dataset
from huggingface_hub import CommitScheduler
from pathlib import Path
import uuid


device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f'[INFO] Using device: {device}')

# token
token = os.environ['TOKEN']

# Load the pretrained model and tokenizer
MODEL_NAME = "atlasia/Al-Atlas-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,token=token) # , token=token
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,token=token).to(device)

# Fix tokenizer padding
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token  # Set pad token

# Predefined examples
examples = [
    ["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
     , 256, 0.7, 0.9, 150, 8, 1.5],
    ["المستقبل ديال الذكاء الصناعي فالمغرب"
     , 256, 0.7, 0.9, 150, 8, 1.5],
    [" المطبخ المغربي"
     , 256, 0.7, 0.9, 150, 8, 1.5],
    ["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم"
     , 256, 0.7, 0.9, 150, 8, 1.5],
]

#inf_dataset=load_dataset("atlasia/atlaset_inference_ds",token=token,split="test",name="llm")
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json"
scheduler = CommitScheduler(
            repo_id="atlasia/atlaset_inference_ds",
            repo_type="dataset",
            folder_path=submit_file,
            every=5,
            token=token
        )
@spaces.GPU
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    output = model.generate(
        **inputs, 
        max_length=max_length, 
        temperature=temperature, 
        top_p=top_p, 
        do_sample=True,
        repetition_penalty=repetition_penalty,
        num_beams=num_beams,
        top_k= top_k,
        early_stopping = True,
        pad_token_id=tokenizer.pad_token_id,  # Explicit pad token
        eos_token_id=tokenizer.eos_token_id,  # Explicit eos token
    )
    result=tokenizer.decode(output[0], skip_special_tokens=True)
    #inf_dataset.add_item({"inputs":prompt,"outputs":result,"params":f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}"})
    save_feedback(prompt,result,f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}")
    return result

def save_feedback(input,output,params) -> None:
    with scheduler.lock:
        with submit_file.open("a") as f:
            f.write(json.dumps({"input": input, "output": output, "params": params}))
            f.write("\n")
    
if __name__ == "__main__":
    # Create the Gradio interface
    with gr.Blocks() as app:
        gr.Interface(
            fn=generate_text,
            inputs=[
                gr.Textbox(label="Prompt: دخل النص بالدارجة"),
                gr.Slider(8, 4096, value=256, label="Max Length"),
                gr.Slider(0.0, 2, value=0.7, label="Temperature"),
                gr.Slider(0.0, 1.0, value=0.9, label="Top-p"),
                gr.Slider(1, 10000, value=150, label="Top-k"),
                gr.Slider(1, 20, value=8, label="Number of Beams"),
                gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"),
            ],
            outputs=gr.Textbox(label="Generated Text in Moroccan Darija"),
            title="Moroccan Darija LLM",
            description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
            examples=examples,
        )
    app.launch()