Spaces:
Running
Running
File size: 3,851 Bytes
30ef1d4 1557b00 3c739a1 75c3f8c 33f2b2c fa004d4 3c739a1 1557b00 30ef1d4 e6ae8f1 30ef1d4 348a268 30ef1d4 3c73224 7a9fdcc 75c3f8c 4cff703 3c739a1 7a9fdcc 30ef1d4 7a9fdcc 30ef1d4 3c73224 30ef1d4 75c3f8c 30ef1d4 75c3f8c 8093b01 75c3f8c 30ef1d4 33cf987 01090a1 33cf987 d56d00d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import spaces
import torch
from datasets import load_dataset
from huggingface_hub import CommitScheduler
from pathlib import Path
import uuid
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f'[INFO] Using device: {device}')
# token
token = os.environ['TOKEN']
# Load the pretrained model and tokenizer
MODEL_NAME = "atlasia/Al-Atlas-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,token=token) # , token=token
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,token=token).to(device)
# Fix tokenizer padding
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token # Set pad token
# Predefined examples
examples = [
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
, 256, 0.7, 0.9, 150, 8, 1.5],
["المستقبل ديال الذكاء الصناعي فالمغرب"
, 256, 0.7, 0.9, 150, 8, 1.5],
[" المطبخ المغربي"
, 256, 0.7, 0.9, 150, 8, 1.5],
["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم"
, 256, 0.7, 0.9, 150, 8, 1.5],
]
#inf_dataset=load_dataset("atlasia/atlaset_inference_ds",token=token,split="test",name="llm")
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json"
scheduler = CommitScheduler(
repo_id="atlasia/atlaset_inference_ds",
repo_type="dataset",
folder_path=submit_file,
every=5,
token=token
)
@spaces.GPU
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
repetition_penalty=repetition_penalty,
num_beams=num_beams,
top_k= top_k,
early_stopping = True,
pad_token_id=tokenizer.pad_token_id, # Explicit pad token
eos_token_id=tokenizer.eos_token_id, # Explicit eos token
)
result=tokenizer.decode(output[0], skip_special_tokens=True)
#inf_dataset.add_item({"inputs":prompt,"outputs":result,"params":f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}"})
save_feedback(prompt,result,f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}")
return result
def save_feedback(input,output,params) -> None:
with scheduler.lock:
with submit_file.open("a") as f:
f.write(json.dumps({"input": input, "output": output, "params": params}))
f.write("\n")
if __name__ == "__main__":
# Create the Gradio interface
with gr.Blocks() as app:
gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt: دخل النص بالدارجة"),
gr.Slider(8, 4096, value=256, label="Max Length"),
gr.Slider(0.0, 2, value=0.7, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, label="Top-p"),
gr.Slider(1, 10000, value=150, label="Top-k"),
gr.Slider(1, 20, value=8, label="Number of Beams"),
gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"),
],
outputs=gr.Textbox(label="Generated Text in Moroccan Darija"),
title="Moroccan Darija LLM",
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
examples=examples,
)
app.launch()
|