Spaces:
Paused
Paused
Upload 2 files
Browse files- app.py +94 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import re
|
5 |
+
import os
|
6 |
+
import csv
|
7 |
+
|
8 |
+
from unsloth import FastLanguageModel
|
9 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
10 |
+
model_name = "../../models/Model_DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-CoT_GPT4o-R_16-Alpha_16-LR_2e-05-Tarea_1", # Modelo base
|
11 |
+
max_seq_length = 2048,
|
12 |
+
dtype = torch.float16,
|
13 |
+
load_in_4bit = True,
|
14 |
+
)
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model.eval() # <- sí se puede usar
|
17 |
+
|
18 |
+
FLAG_FILE = "flags_data/flags.csv"
|
19 |
+
os.makedirs(os.path.dirname(FLAG_FILE), exist_ok=True)
|
20 |
+
|
21 |
+
def clean_lyrics(text):
|
22 |
+
# Elimina caracteres no alfabéticos (excepto espacios y letras acentuadas comunes en español)
|
23 |
+
text = re.sub(r"[^a-zA-ZáéíóúñüÁÉÍÓÚÑÜ ]+", " ", text)
|
24 |
+
# Convierte a minúsculas
|
25 |
+
text = text.lower()
|
26 |
+
# Reduce espacios múltiples
|
27 |
+
text = re.sub(r"\s+", " ", text).strip()
|
28 |
+
return text
|
29 |
+
|
30 |
+
# Función de predicción
|
31 |
+
def detect_misogyny(text):
|
32 |
+
cleaned_text = clean_lyrics(text)
|
33 |
+
# Construir el prompt de entrada
|
34 |
+
prompt = """
|
35 |
+
### Instruccion
|
36 |
+
Analiza la siguiente letra de canción y determina si contiene contenido misógino. Evalúa si incluye lenguaje, actitudes o mensajes que:
|
37 |
+
- Degraden o deshumanicen a las mujeres.
|
38 |
+
- Menosprecien a las mujeres de manera explícita o implícita.
|
39 |
+
- Refuercen estereotipos negativos o dañinos sobre las mujeres.
|
40 |
+
- Promuevan violencia física, emocional o sexual contra las mujeres.
|
41 |
+
Piensa cuidadosamente tu respuesta y crea paso a paso una chain of thoughts para dar una respuesta logica.
|
42 |
+
Responde únicamente con "1" si la letra es misógina o con "0" si la letra no es misógina. No proporciones ninguna explicación ni texto adicional.
|
43 |
+
|
44 |
+
### Letra:
|
45 |
+
{lyrics}
|
46 |
+
|
47 |
+
### Respuesta:
|
48 |
+
<think>"""
|
49 |
+
|
50 |
+
prompt = prompt.format(lyrics=text)
|
51 |
+
|
52 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = model.generate(
|
55 |
+
**inputs,
|
56 |
+
max_new_tokens=2048,
|
57 |
+
do_sample=False,
|
58 |
+
temperature=0.6
|
59 |
+
)
|
60 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
+
|
62 |
+
# Extraer explicación entre <think>...</think>
|
63 |
+
explanation_match = re.search(r"<think>(.*?)</think>", response, re.DOTALL)
|
64 |
+
explanation = explanation_match.group(1).strip() if explanation_match else ""
|
65 |
+
|
66 |
+
# Extraer "1" o "0" después de </think>
|
67 |
+
label_match = re.search(r"</think>\s*(\d)", response)
|
68 |
+
label = label_match.group(1) if label_match else ""
|
69 |
+
|
70 |
+
# Combinar resultado final
|
71 |
+
return f"{explanation}\n\nRespuesta final: {label}" if explanation and label else response.strip()
|
72 |
+
|
73 |
+
|
74 |
+
def save_flag(user_text, response, flag_type):
|
75 |
+
# Guarda la entrada, salida y si fue correcta o incorrecta en CSV
|
76 |
+
with open(FLAG_FILE, mode="a", newline="", encoding="utf-8") as f:
|
77 |
+
writer = csv.writer(f)
|
78 |
+
writer.writerow([user_text, response, flag_type])
|
79 |
+
return f"Guardado flag: {flag_type}"
|
80 |
+
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
user_input = gr.Textbox(label="Letra de canción", lines=10)
|
83 |
+
result = gr.Textbox(label="Respuesta del modelo", lines=10)
|
84 |
+
|
85 |
+
btn_analizar = gr.Button("Analizar")
|
86 |
+
btn_correcto = gr.Button("Respuesta correcta")
|
87 |
+
btn_incorrecto = gr.Button("Respuesta incorrecta")
|
88 |
+
|
89 |
+
btn_analizar.click(fn=detect_misogyny, inputs=user_input, outputs=result)
|
90 |
+
|
91 |
+
btn_correcto.click(fn=save_flag, inputs=[user_input, result, gr.State("correcto")], outputs=result)
|
92 |
+
btn_incorrecto.click(fn=save_flag, inputs=[user_input, result, gr.State("incorrecto")], outputs=result)
|
93 |
+
|
94 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
unsloth
|
5 |
+
accelerate
|
6 |
+
bitsandbytes
|
7 |
+
scipy # requerido por algunos backends de HF
|