Spaces:
Sleeping
Sleeping
| import copy | |
| import random | |
| from typing import Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as t_func | |
| from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present | |
| class Hubert(nn.Module): | |
| def __init__(self, num_label_embeddings: int = 100, mask: bool = True): | |
| super().__init__() | |
| self._mask = mask | |
| self.feature_extractor = FeatureExtractor() | |
| self.feature_projection = FeatureProjection() | |
| self.positional_embedding = PositionalConvEmbedding() | |
| self.norm = nn.LayerNorm(768) | |
| self.dropout = nn.Dropout(0.1) | |
| self.encoder = TransformerEncoder( | |
| nn.TransformerEncoderLayer( | |
| 768, 12, 3072, activation="gelu", batch_first=True | |
| ), | |
| 12, | |
| ) | |
| self.proj = nn.Linear(768, 256) | |
| self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_()) | |
| self.label_embedding = nn.Embedding(num_label_embeddings, 256) | |
| def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
| mask = None | |
| if self.training and self._mask: | |
| mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2) | |
| x[mask] = self.masked_spec_embed.to(x.dtype) | |
| return x, mask | |
| def encode( | |
| self, x: torch.Tensor, layer: Optional[int] = None | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| x = self.feature_extractor(x) | |
| x = self.feature_projection(x.transpose(1, 2)) | |
| x, mask = self.mask(x) | |
| x = x + self.positional_embedding(x) | |
| x = self.dropout(self.norm(x)) | |
| x = self.encoder(x, output_layer=layer) | |
| return x, mask | |
| def logits(self, x: torch.Tensor) -> torch.Tensor: | |
| logits = torch.cosine_similarity( | |
| x.unsqueeze(2), | |
| self.label_embedding.weight.unsqueeze(0).unsqueeze(0), | |
| dim=-1, | |
| ) | |
| return logits / 0.1 | |
| def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
| x, mask = self.encode(x) | |
| x = self.proj(x) | |
| logits = self.logits(x) | |
| return logits, mask | |
| class HubertSoft(Hubert): | |
| def __init__(self): | |
| super().__init__() | |
| def units(self, wav: torch.Tensor) -> torch.Tensor: | |
| wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2)) | |
| x, _ = self.encode(wav) | |
| return self.proj(x) | |
| class FeatureExtractor(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False) | |
| self.norm0 = nn.GroupNorm(512, 512) | |
| self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
| self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
| self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
| self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
| self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False) | |
| self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = t_func.gelu(self.norm0(self.conv0(x))) | |
| x = t_func.gelu(self.conv1(x)) | |
| x = t_func.gelu(self.conv2(x)) | |
| x = t_func.gelu(self.conv3(x)) | |
| x = t_func.gelu(self.conv4(x)) | |
| x = t_func.gelu(self.conv5(x)) | |
| x = t_func.gelu(self.conv6(x)) | |
| return x | |
| class FeatureProjection(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.norm = nn.LayerNorm(512) | |
| self.projection = nn.Linear(512, 768) | |
| self.dropout = nn.Dropout(0.1) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.norm(x) | |
| x = self.projection(x) | |
| x = self.dropout(x) | |
| return x | |
| class PositionalConvEmbedding(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.conv = nn.Conv1d( | |
| 768, | |
| 768, | |
| kernel_size=128, | |
| padding=128 // 2, | |
| groups=16, | |
| ) | |
| self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.conv(x.transpose(1, 2)) | |
| x = t_func.gelu(x[:, :, :-1]) | |
| return x.transpose(1, 2) | |
| class TransformerEncoder(nn.Module): | |
| def __init__( | |
| self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int | |
| ) -> None: | |
| super(TransformerEncoder, self).__init__() | |
| self.layers = nn.ModuleList( | |
| [copy.deepcopy(encoder_layer) for _ in range(num_layers)] | |
| ) | |
| self.num_layers = num_layers | |
| def forward( | |
| self, | |
| src: torch.Tensor, | |
| mask: torch.Tensor = None, | |
| src_key_padding_mask: torch.Tensor = None, | |
| output_layer: Optional[int] = None, | |
| ) -> torch.Tensor: | |
| output = src | |
| for layer in self.layers[:output_layer]: | |
| output = layer( | |
| output, src_mask=mask, src_key_padding_mask=src_key_padding_mask | |
| ) | |
| return output | |
| def _compute_mask( | |
| shape: Tuple[int, int], | |
| mask_prob: float, | |
| mask_length: int, | |
| device: torch.device, | |
| min_masks: int = 0, | |
| ) -> torch.Tensor: | |
| batch_size, sequence_length = shape | |
| if mask_length < 1: | |
| raise ValueError("`mask_length` has to be bigger than 0.") | |
| if mask_length > sequence_length: | |
| raise ValueError( | |
| f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`" | |
| ) | |
| # compute number of masked spans in batch | |
| num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random()) | |
| num_masked_spans = max(num_masked_spans, min_masks) | |
| # make sure num masked indices <= sequence_length | |
| if num_masked_spans * mask_length > sequence_length: | |
| num_masked_spans = sequence_length // mask_length | |
| # SpecAugment mask to fill | |
| mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool) | |
| # uniform distribution to sample from, make sure that offset samples are < sequence_length | |
| uniform_dist = torch.ones( | |
| (batch_size, sequence_length - (mask_length - 1)), device=device | |
| ) | |
| # get random indices to mask | |
| mask_indices = torch.multinomial(uniform_dist, num_masked_spans) | |
| # expand masked indices to masked spans | |
| mask_indices = ( | |
| mask_indices.unsqueeze(dim=-1) | |
| .expand((batch_size, num_masked_spans, mask_length)) | |
| .reshape(batch_size, num_masked_spans * mask_length) | |
| ) | |
| offsets = ( | |
| torch.arange(mask_length, device=device)[None, None, :] | |
| .expand((batch_size, num_masked_spans, mask_length)) | |
| .reshape(batch_size, num_masked_spans * mask_length) | |
| ) | |
| mask_idxs = mask_indices + offsets | |
| # scatter indices to mask | |
| mask = mask.scatter(1, mask_idxs, True) | |
| return mask | |
| def hubert_soft( | |
| path: str, | |
| ) -> HubertSoft: | |
| r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`. | |
| Args: | |
| path (str): path of a pretrained model | |
| """ | |
| hubert = HubertSoft() | |
| checkpoint = torch.load(path) | |
| consume_prefix_in_state_dict_if_present(checkpoint, "module.") | |
| hubert.load_state_dict(checkpoint) | |
| hubert.eval() | |
| return hubert | |