File size: 2,418 Bytes
812f70a
 
 
 
 
 
 
 
 
 
 
764f34e
ba913e7
764f34e
c6bb1bc
764f34e
 
ba913e7
764f34e
 
 
 
 
 
 
 
 
 
ba913e7
764f34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812f70a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# https://www.gradio.app/guides/using-hugging-face-integrations

from transformers import pipeline
import gradio as gr

pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")

demo = gr.Interface.from_pipeline(pipe)
demo.launch()

"""
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch

model = "mistralai/Mistral-7B-Instruct-v0.1"
model = "TinyLlama/TinyLlama-1.1B-Chat-v0.3"

# Gradio
title = "Shisa 7B"
description = "Test out Shisa 7B in either English or Japanese."
placeholder = "Type Here / ここにε…₯εŠ›γ—γ¦γγ γ•γ„" 
examples = [
    "Hello, how are you?", 
    "γ“γ‚“γ«γ‘γ―γ€ε…ƒζ°—γ§γ™γ‹οΌŸ",
    "γŠγ£γ™γ€ε…ƒζ°—οΌŸ",
    "γ“γ‚“γ«γ‘γ―γ€γ„γ‹γŒγŠιŽγ”γ—γ§γ™γ‹οΌŸ",
]

tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(model)

def chat(input, history=[]):
    input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
    history = model.generate(
        input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
    ).tolist()

    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    '''
    # tokenize the new input sentence
    new_user_input_ids = tokenizer.encode(
        input + tokenizer.eos_token, return_tensors="pt"
    )

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

    # generate a response
    history = model.generate(
        bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
    ).tolist()

    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    # print('decoded_response-->>'+str(response))
    response = [
        (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
    ]  # convert to tuples of list
    # print('response-->>'+str(response))
    '''
    return response, history


gr.ChatInterface(
    chat,
    chatbot=gr.Chatbot(height=400),
    textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
    title=title,
    description=description,
    theme="soft",
    examples=examples,
    cache_examples=False,
    undo_btn="Delete Previous",
    clear_btn="Clear",
).queue().launch()
"""