Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,26 @@
|
|
|
|
1 |
import requests
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
|
6 |
-
inception_net = tf.keras.applications.MobileNetV2() # load the model
|
7 |
|
8 |
# Download human-readable labels for ImageNet.
|
9 |
response = requests.get("https://git.io/JJkYN")
|
10 |
labels = response.text.split("\n")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
def classify_image(inp):
|
14 |
-
inp = inp.reshape((-1, 224, 224, 3))
|
15 |
-
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
|
16 |
-
prediction = inception_net.predict(inp).flatten()
|
17 |
-
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
18 |
-
|
19 |
-
|
20 |
-
image = gr.Image(shape=(224, 224))
|
21 |
-
label = gr.Label(num_top_classes=3)
|
22 |
-
|
23 |
-
demo = gr.Interface(
|
24 |
-
fn=classify_image, inputs=image, outputs=label, interpretation="default"
|
25 |
-
)
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
import requests
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
|
6 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
7 |
|
|
|
8 |
|
9 |
# Download human-readable labels for ImageNet.
|
10 |
response = requests.get("https://git.io/JJkYN")
|
11 |
labels = response.text.split("\n")
|
12 |
|
13 |
+
def predict(inp):
|
14 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
15 |
+
with torch.no_grad():
|
16 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
17 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
18 |
+
return confidences
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
gr.Interface(fn=predict,
|
24 |
+
inputs=gr.Image(type="pil"),
|
25 |
+
outputs=gr.Label(num_top_classes=3),
|
26 |
+
examples=["lion.jpg", "cheetah.jpg"]).launch()
|