Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ DATA_DATASET = f"{OWNER}/CTFAIA"
|
|
23 |
INTERNAL_DATA_DATASET = f"{OWNER}/CTFAIA_internal"
|
24 |
SUBMISSION_DATASET = f"{OWNER}/CTFAIA_submissions_internal"
|
25 |
CONTACT_DATASET = f"{OWNER}/contact_info"
|
26 |
-
RESULTS_DATASET = f"{OWNER}/
|
27 |
LEADERBOARD_PATH = f"{OWNER}/agent_ctf_leaderboard"
|
28 |
api = HfApi()
|
29 |
|
@@ -31,13 +31,13 @@ YEAR_VERSION = "2024"
|
|
31 |
|
32 |
os.makedirs("scored", exist_ok=True)
|
33 |
|
34 |
-
all_version = ['
|
35 |
|
36 |
contact_infos = load_dataset(
|
37 |
CONTACT_DATASET,
|
38 |
token=TOKEN,
|
39 |
-
download_mode="force_redownload",
|
40 |
-
|
41 |
)
|
42 |
|
43 |
all_gold_dataset = {}
|
@@ -49,7 +49,7 @@ for dataset_version in all_version:
|
|
49 |
dataset_version,
|
50 |
token=TOKEN,
|
51 |
download_mode="force_redownload",
|
52 |
-
|
53 |
trust_remote_code=True
|
54 |
)
|
55 |
all_gold_results[dataset_version] = {
|
@@ -61,7 +61,7 @@ for dataset_version in all_version:
|
|
61 |
dataset_version,
|
62 |
token=TOKEN,
|
63 |
download_mode="force_redownload",
|
64 |
-
|
65 |
trust_remote_code=True
|
66 |
)
|
67 |
|
@@ -69,23 +69,25 @@ for dataset_version in all_version:
|
|
69 |
def get_dataframe_from_results(eval_results, split):
|
70 |
local_df = eval_results[split]
|
71 |
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
|
72 |
-
local_df = local_df.remove_columns(["
|
73 |
local_df = local_df.rename_column("model", "Model name")
|
74 |
local_df = local_df.rename_column("model_family", "Model family")
|
75 |
-
local_df = local_df.rename_column("score", "Average score (%)")
|
76 |
-
for i in [1, 2, 3]:
|
77 |
-
|
78 |
df = pd.DataFrame(local_df)
|
79 |
-
df = df.sort_values(by=["
|
80 |
|
81 |
-
numeric_cols = [c for c in local_df.column_names if
|
|
|
82 |
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
|
83 |
-
|
84 |
-
|
85 |
return df
|
86 |
|
87 |
|
88 |
eval_dataframe = {}
|
|
|
89 |
for dataset_version in all_version:
|
90 |
eval_dataframe[dataset_version] = get_dataframe_from_results(
|
91 |
eval_results=eval_results[dataset_version],
|
@@ -97,14 +99,28 @@ def restart_space():
|
|
97 |
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
98 |
|
99 |
|
100 |
-
TYPES = ["markdown", "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
def add_new_eval(
|
104 |
dataset_version: str,
|
105 |
model: str,
|
106 |
model_family: str,
|
107 |
-
system_prompt: str,
|
108 |
url: str,
|
109 |
path_to_file: str,
|
110 |
organisation: str,
|
@@ -118,7 +134,14 @@ def add_new_eval(
|
|
118 |
|
119 |
print("Adding new eval")
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
if model.lower() in set(
|
123 |
[m.lower() for m in eval_results[dataset_version][val_or_test]["model"]]) and organisation.lower() in set(
|
124 |
[o.lower() for o in eval_results[dataset_version][val_or_test]["organisation"]]):
|
@@ -127,23 +150,19 @@ def add_new_eval(
|
|
127 |
if path_to_file is None:
|
128 |
return format_warning("Please attach a file.")
|
129 |
|
130 |
-
# Save submitted file
|
131 |
-
api.upload_file(
|
132 |
-
repo_id=SUBMISSION_DATASET,
|
133 |
-
path_or_fileobj=path_to_file.name,
|
134 |
-
path_in_repo=f"{organisation}/{model}/{dataset_version}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
|
135 |
-
repo_type="dataset",
|
136 |
-
token=TOKEN
|
137 |
-
)
|
138 |
-
|
139 |
# Gold answers
|
140 |
gold_results = all_gold_results[dataset_version]
|
|
|
141 |
|
142 |
# Compute score
|
143 |
file_path = path_to_file.name
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
147 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
148 |
with open(file_path, 'r') as f:
|
149 |
for ix, line in enumerate(f):
|
@@ -158,12 +177,11 @@ def add_new_eval(
|
|
158 |
task_name = task["task_name"]
|
159 |
try:
|
160 |
level = int(gold_results[val_or_test][task_name]["Level"])
|
|
|
161 |
except KeyError:
|
162 |
return format_error(
|
163 |
f"{task_name} not found in split {val_or_test}. Are you sure you submitted the correct file?")
|
164 |
|
165 |
-
score = question_scorer(task, gold_results[val_or_test][task_name])
|
166 |
-
|
167 |
scored_file.write(
|
168 |
json.dumps({
|
169 |
"id": task_name,
|
@@ -173,14 +191,39 @@ def add_new_eval(
|
|
173 |
}) + "\n"
|
174 |
)
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
# Save scored file
|
186 |
api.upload_file(
|
@@ -195,14 +238,15 @@ def add_new_eval(
|
|
195 |
eval_entry = {
|
196 |
"model": model,
|
197 |
"model_family": model_family,
|
198 |
-
"system_prompt": system_prompt,
|
199 |
"url": url,
|
200 |
"organisation": organisation,
|
201 |
-
"
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"
|
|
|
205 |
}
|
|
|
206 |
eval_results[dataset_version][val_or_test] = eval_results[dataset_version][val_or_test].add_item(eval_entry)
|
207 |
eval_results[dataset_version].push_to_hub(RESULTS_DATASET, config_name=dataset_version, token=TOKEN)
|
208 |
|
@@ -228,22 +272,21 @@ def refresh():
|
|
228 |
dataset_version,
|
229 |
token=TOKEN,
|
230 |
download_mode="force_redownload",
|
231 |
-
|
232 |
)
|
233 |
-
|
|
|
|
|
234 |
for dataset_version in all_version:
|
235 |
-
|
236 |
eval_results=eval_results[dataset_version],
|
237 |
split="validation"
|
238 |
)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
)
|
245 |
-
)
|
246 |
-
return leaderboard_tables
|
247 |
|
248 |
|
249 |
def upload_file(files):
|
@@ -286,7 +329,6 @@ with demo:
|
|
286 |
level_of_test = gr.Radio(all_version, value=all_version[0], label="dataset_version")
|
287 |
model_name_textbox = gr.Textbox(label="Model name", value='')
|
288 |
model_family_textbox = gr.Textbox(label="Model family", value='')
|
289 |
-
system_prompt_textbox = gr.Textbox(label="System prompt example", value='')
|
290 |
url_textbox = gr.Textbox(label="Url to model information", value='')
|
291 |
with gr.Column():
|
292 |
organisation = gr.Textbox(label="Organisation", value='')
|
@@ -303,7 +345,6 @@ with demo:
|
|
303 |
level_of_test,
|
304 |
model_name_textbox,
|
305 |
model_family_textbox,
|
306 |
-
system_prompt_textbox,
|
307 |
url_textbox,
|
308 |
file_output,
|
309 |
organisation,
|
|
|
23 |
INTERNAL_DATA_DATASET = f"{OWNER}/CTFAIA_internal"
|
24 |
SUBMISSION_DATASET = f"{OWNER}/CTFAIA_submissions_internal"
|
25 |
CONTACT_DATASET = f"{OWNER}/contact_info"
|
26 |
+
RESULTS_DATASET = f"{OWNER}/test_result"
|
27 |
LEADERBOARD_PATH = f"{OWNER}/agent_ctf_leaderboard"
|
28 |
api = HfApi()
|
29 |
|
|
|
31 |
|
32 |
os.makedirs("scored", exist_ok=True)
|
33 |
|
34 |
+
all_version = ['20240602']
|
35 |
|
36 |
contact_infos = load_dataset(
|
37 |
CONTACT_DATASET,
|
38 |
token=TOKEN,
|
39 |
+
# download_mode="force_redownload",
|
40 |
+
verification_mode="no_checks"
|
41 |
)
|
42 |
|
43 |
all_gold_dataset = {}
|
|
|
49 |
dataset_version,
|
50 |
token=TOKEN,
|
51 |
download_mode="force_redownload",
|
52 |
+
verification_mode="no_checks",
|
53 |
trust_remote_code=True
|
54 |
)
|
55 |
all_gold_results[dataset_version] = {
|
|
|
61 |
dataset_version,
|
62 |
token=TOKEN,
|
63 |
download_mode="force_redownload",
|
64 |
+
verification_mode="no_checks",
|
65 |
trust_remote_code=True
|
66 |
)
|
67 |
|
|
|
69 |
def get_dataframe_from_results(eval_results, split):
|
70 |
local_df = eval_results[split]
|
71 |
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
|
72 |
+
local_df = local_df.remove_columns(["url"])
|
73 |
local_df = local_df.rename_column("model", "Model name")
|
74 |
local_df = local_df.rename_column("model_family", "Model family")
|
75 |
+
# local_df = local_df.rename_column("score", "Average score (%)")
|
76 |
+
# for i in [1, 2, 3]:
|
77 |
+
# local_df = local_df.rename_column(f"score_level{i}", f"Level {i} score (%)")
|
78 |
df = pd.DataFrame(local_df)
|
79 |
+
df = df.sort_values(by=["completion_level"], ascending=False)
|
80 |
|
81 |
+
numeric_cols = [c for c in local_df.column_names if
|
82 |
+
c in ["success_rate", "completion_level", "expertise", "reasoning", "comprehension"]]
|
83 |
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
|
84 |
+
df = df.style.format("{:.2%}", subset=numeric_cols)
|
85 |
+
print(type(df))
|
86 |
return df
|
87 |
|
88 |
|
89 |
eval_dataframe = {}
|
90 |
+
|
91 |
for dataset_version in all_version:
|
92 |
eval_dataframe[dataset_version] = get_dataframe_from_results(
|
93 |
eval_results=eval_results[dataset_version],
|
|
|
99 |
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
100 |
|
101 |
|
102 |
+
TYPES = ["markdown", "str", "str", "str", "number", "number", "number", "number"]
|
103 |
+
LEVELS = ["all", 1, 2, 3]
|
104 |
+
|
105 |
+
|
106 |
+
def round_and_pad(number, ndigits=2):
|
107 |
+
# 四舍五入到指定的小数位数
|
108 |
+
rounded_number = round(number, ndigits)
|
109 |
+
# 转换为字符串
|
110 |
+
number_str = str(rounded_number)
|
111 |
+
# 分离整数部分和小数部分
|
112 |
+
integer_part, decimal_part = number_str.split('.')
|
113 |
+
# 如果小数部分不足指定的位数,补零
|
114 |
+
while len(decimal_part) < ndigits:
|
115 |
+
decimal_part += '0'
|
116 |
+
# 拼接回去,并转换回数字
|
117 |
+
return '.'.join([integer_part, decimal_part])
|
118 |
|
119 |
|
120 |
def add_new_eval(
|
121 |
dataset_version: str,
|
122 |
model: str,
|
123 |
model_family: str,
|
|
|
124 |
url: str,
|
125 |
path_to_file: str,
|
126 |
organisation: str,
|
|
|
134 |
|
135 |
print("Adding new eval")
|
136 |
|
137 |
+
Check if the
|
138 |
+
combination
|
139 |
+
model / org
|
140 |
+
already
|
141 |
+
exists and prints
|
142 |
+
a
|
143 |
+
warning
|
144 |
+
message if yes
|
145 |
if model.lower() in set(
|
146 |
[m.lower() for m in eval_results[dataset_version][val_or_test]["model"]]) and organisation.lower() in set(
|
147 |
[o.lower() for o in eval_results[dataset_version][val_or_test]["organisation"]]):
|
|
|
150 |
if path_to_file is None:
|
151 |
return format_warning("Please attach a file.")
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
# Gold answers
|
154 |
gold_results = all_gold_results[dataset_version]
|
155 |
+
print(gold_results)
|
156 |
|
157 |
# Compute score
|
158 |
file_path = path_to_file.name
|
159 |
+
success_rate = {'all': 0, 1: 0, 2: 0, 3: 0}
|
160 |
+
completion_level = {'all': 0, 1: 0, 2: 0, 3: 0}
|
161 |
+
expertise = {'all': 0, 1: 0, 2: 0, 3: 0}
|
162 |
+
reasoning = {'all': 0, 1: 0, 2: 0, 3: 0}
|
163 |
+
comprehension = {'all': 0, 1: 0, 2: 0, 3: 0}
|
164 |
+
num = {'all': 0, 1: 0, 2: 0, 3: 0}
|
165 |
+
|
166 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
167 |
with open(file_path, 'r') as f:
|
168 |
for ix, line in enumerate(f):
|
|
|
177 |
task_name = task["task_name"]
|
178 |
try:
|
179 |
level = int(gold_results[val_or_test][task_name]["Level"])
|
180 |
+
score = question_scorer(task, gold_results[val_or_test][task_name])
|
181 |
except KeyError:
|
182 |
return format_error(
|
183 |
f"{task_name} not found in split {val_or_test}. Are you sure you submitted the correct file?")
|
184 |
|
|
|
|
|
185 |
scored_file.write(
|
186 |
json.dumps({
|
187 |
"id": task_name,
|
|
|
191 |
}) + "\n"
|
192 |
)
|
193 |
|
194 |
+
num[level] += 1
|
195 |
+
completion_level[level] += score[0]
|
196 |
+
expertise[level] += score[1]
|
197 |
+
reasoning[level] += score[2]
|
198 |
+
comprehension[level] += score[3]
|
199 |
+
|
200 |
+
num['all'] += 1
|
201 |
+
completion_level['all'] += score[0]
|
202 |
+
expertise['all'] += score[1]
|
203 |
+
reasoning['all'] += score[2]
|
204 |
+
comprehension['all'] += score[3]
|
205 |
+
|
206 |
+
if score[0] == 10:
|
207 |
+
success_rate[level] += 1
|
208 |
+
success_rate['all'] += 1
|
209 |
+
|
210 |
+
for key in LEVELS:
|
211 |
+
success_rate[key] = round_and_pad(success_rate[key] / num[key])
|
212 |
+
completion_level[key] = round_and_pad(completion_level[key] / num[key])
|
213 |
+
expertise[key] = round_and_pad(expertise[key] / num[key])
|
214 |
+
reasoning[key] = round_and_pad(reasoning[key] / num[key])
|
215 |
+
comprehension[key] = round_and_pad(comprehension[key] / num[key])
|
216 |
+
|
217 |
+
print(success_rate, completion_level, expertise, reasoning, comprehension)
|
218 |
+
|
219 |
+
# Save submitted file
|
220 |
+
api.upload_file(
|
221 |
+
repo_id=SUBMISSION_DATASET,
|
222 |
+
path_or_fileobj=path_to_file.name,
|
223 |
+
path_in_repo=f"{organisation}/{model}/{dataset_version}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
|
224 |
+
repo_type="dataset",
|
225 |
+
token=TOKEN
|
226 |
+
)
|
227 |
|
228 |
# Save scored file
|
229 |
api.upload_file(
|
|
|
238 |
eval_entry = {
|
239 |
"model": model,
|
240 |
"model_family": model_family,
|
|
|
241 |
"url": url,
|
242 |
"organisation": organisation,
|
243 |
+
"success_rate": success_rate["all"],
|
244 |
+
"completion_level": completion_level["all"],
|
245 |
+
"expertise": expertise["all"],
|
246 |
+
"reasoning": reasoning["all"],
|
247 |
+
"comprehension": comprehension["all"]
|
248 |
}
|
249 |
+
|
250 |
eval_results[dataset_version][val_or_test] = eval_results[dataset_version][val_or_test].add_item(eval_entry)
|
251 |
eval_results[dataset_version].push_to_hub(RESULTS_DATASET, config_name=dataset_version, token=TOKEN)
|
252 |
|
|
|
272 |
dataset_version,
|
273 |
token=TOKEN,
|
274 |
download_mode="force_redownload",
|
275 |
+
verification_mode="no_checks"
|
276 |
)
|
277 |
+
|
278 |
+
new_eval_dataframe = {}
|
279 |
+
new_leaderboard_tables = []
|
280 |
for dataset_version in all_version:
|
281 |
+
new_eval_dataframe[dataset_version] = get_dataframe_from_results(
|
282 |
eval_results=eval_results[dataset_version],
|
283 |
split="validation"
|
284 |
)
|
285 |
+
new_leaderboard_tables.append(new_eval_dataframe[dataset_version])
|
286 |
+
if len(new_leaderboard_tables) == 1:
|
287 |
+
return new_leaderboard_tables[0]
|
288 |
+
else:
|
289 |
+
return new_leaderboard_tables
|
|
|
|
|
|
|
290 |
|
291 |
|
292 |
def upload_file(files):
|
|
|
329 |
level_of_test = gr.Radio(all_version, value=all_version[0], label="dataset_version")
|
330 |
model_name_textbox = gr.Textbox(label="Model name", value='')
|
331 |
model_family_textbox = gr.Textbox(label="Model family", value='')
|
|
|
332 |
url_textbox = gr.Textbox(label="Url to model information", value='')
|
333 |
with gr.Column():
|
334 |
organisation = gr.Textbox(label="Organisation", value='')
|
|
|
345 |
level_of_test,
|
346 |
model_name_textbox,
|
347 |
model_family_textbox,
|
|
|
348 |
url_textbox,
|
349 |
file_output,
|
350 |
organisation,
|